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Abstract. In this paper, we present a study of the Sommerfeld effect (Jump phenomena) in a 

nonideal mechanical oscillator, composed of an unbalanced DC motor, with limited power 

supply, coupled to the free end of cantilever beam and a shape memory alloy (SMA) actuator 

that works to damp the vibration. A nonlinear mathematical model for this system is 

developed. The SMA wire constitutive model considers a nonlinear phase transformation 

model. Numerical simulations shows the different aspects about the Sommerfeld effect, 

illustrating the influence of the different temperatures of the SMA actuator on the dynamic of 

the nonideal system. 

Keywords: Nonideal oscillator, Shape memory alloy, Jump phenomena  

1  INTRODUCTION 

With the necessity of engineering materials that exhibit high performance and new 

functions, the so-called smart materials appears with the ability to change their physical form 

thought an external stimulus. These materials have the capability to work as sensors, actuators 

or constituents for structures and physical devices (Sun et al., 2012; Piccirillo, 2007). 

Among these materials, there are the shape memory alloys (SMA), a group of metal 

alloys which have the capacity to return into a previous shape through the increase of its 

temperature. This property is connected to the ability to reverse martensite transformation, 

and can be induced by heat or by applying an electric current. The phase reversal occurs 

between a more orderly crystallographic phase, the austenite (high temperature), and a less 

ordered crystallographic phase, the martensite (low temperature). (Piccirillo, 2007; Piccirillo 

et al., 2008). 

The use of these materials as actuators due to their different characteristics like the effect 

of shape memory, cited above, as well as the pseudo-elasticity and high capacity for damping, 

has shown promising results in systems design area, as seen in work of Piccirillo (2012), 

Tusset et al. (2013), Bil et al. (2013) and others. 

In recent times, the nonideal systems are gaining more attention of researchers because 

the ideal systems have an extensive exploratory literature, nonideal systems have been little 

explored and presented as a challenge both in the field of mathematics and engineering 

(Balthazar et al.,2003; Piccirillo, 2007). 

Ideal systems are systems that considers the actuator influences over the system on which 

he is working, but do not consider the influence of the structure to the actuator. Conversely, 

systems that consider the dynamic influence of the structure on the actuator receive the name 

of nonideal systems (Fenili, 2000). 

The first problem characterized as nonideal to be studied was the Sommerfeld effect, in 

1904. When analyzing an electromechanical system, consisting of a beam and an electric 

motor. Arnold Sommerfeld realized that the system had some instability, reacting differently 

when passing the resonance regions. It was noticed that when the system came closer to the 

resonance region, the energy supplied to the system was not fully converted to angular speed 

of the motor, but was lost, serving only to increase the amplitude of the structure vibration. 

After passing through the resonance region, the amplitude of vibration falls, and the motor 

angular frequency back to rise with the increase in motor voltage. This effect is also known as 

jump phenomenon (Balthazar et al., 2003; Gonçalves et al., 2014; Konenenko, 1969). 
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According to El-Badawy (2007) and Felix (2002), while much of the actual physical 

systems has nonideal characteristics, for many cases, these effects are not considered in the 

analysis, often considering the system as ideal. But, the simplification of the mathematical 

model, considering an ideal system, sometimes is not reasonable, then needing to make the 

consideration of nonideal system to achieve best results. 

 The difference in the mathematical modeling of the ideal and non-ideal dynamical 

systems, is that in the first one, called ideal type or system with infinite energy supply, it’s 

made the consideration that the systems only depends on time, that is, without considering an 

influence of the structure in the energy source. In nonideal type systems, it is made the 

consideration that the structure interacts with the energy source, that is, the nonideal power 

source, while acting on a system, also suffers a reciprocal effect. These systems are also 

called systems with finite source of energy. (Felix, 2002; Balthazar et al., 2003). 

In the real world these systems do not present physical differences, but when taking 

account the math consideration in modeling, where the system is nonideal, one or more extra 

equations (depending on the number of electric motors in the system) should be added. This 

equation is responsible to represent the interaction of the structure with the excitation source, 

also elapsing in an increase of the degrees of freedom of the system (Castão et al., 2011; 

Felix, 2002; Tusset et al., 2016). 

This work discuss the viability of a shape memory material to attenuate the vibration and 

the Sommerfeld effect in a nonideal oscillator. Numerical simulations are performed 

considering the Falk’s nonlinear model for the shape memory material, where results are 

obtained for different temperatures.  

2  NONIDEAL SYSTEM 

2.1 Mathematical model 

The system, object of study in this paper, is shown in Fig. 1 (Balthazar et al., 2003). The 

system consists of a DC motor attached on the free end of a cantilever beam. The electric 

motor has in the end of the shaft an unbalanced mass. 

 

Figure 1. (a) Nonideal system – Physical model, (b) Nonideal system – Mathematical model 

In this work, the system’s equations are obtained through the use of the Lagrange 

formalism. In this method, the equations of motion can be expressed as the form show in the 

Eq. (1). 
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𝑑𝑡
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𝑑
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(

𝜕𝐿

𝜕𝑞̇𝑖
) = 0               𝑖 = 1,2,3 … 𝑁 (1) 

Where L is the Lagrangian function and 𝑞𝑖 is a set of generalized coordinates. The L 

function is defined by the difference between the kinetic energy (T) and the potential energy 

(V) as show in the Eq. (2). 

𝐿 = 𝑇 − 𝑉 (2) 

The kinetic energy for the system shown in the Fig. 1 is: 

𝑇 =
1

2
𝑀𝑥̇2 +

1

2
𝐽𝜑̇2 +

1

2
m(𝑥̇ + 𝑟𝜑̇𝑐𝑜𝑠𝜑)2 +

1

2
m(𝑟𝜑̇𝑠𝑖𝑛𝜑)2 (3) 

 Where M is the mass of the beam-motor system, c is the damping constant, k is the 

stiffness of the spring, J is the inertia of the motor, r is the eccentricity of the shaft and m is 

the unbalanced mass. 

The potential energy is given only by the force of the spring, as show in the Eq. (4). 

𝑉 =
1

2
𝑘𝑥2 (4) 

Substituting Eq. (3) and Eq. (4) into the Eq. (2) and Eq. (1) it is possible to obtain the 

system shown in Eq. (5). 

𝑀𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 − 𝑚2𝑟(𝜑̇2𝑠𝑒𝑛 𝜑 + 𝜑̈ cos 𝜑) = 0 

(𝐽 + 𝑚2𝑟2)𝜑̈ − 𝑚2𝑟𝑥̈ cos 𝜑 = 𝑆(𝜑̇) 
(5) 

Where S represents the net torque of the motor (El-Badawy, 2007). 

To complete the dynamical system, the electromechanical equations of the DC motor are 

considered, which are given by (Dorf, 1998): 

𝑅𝑎𝑖𝑎 +
𝑑𝑖𝑎

𝑑𝑡
= 𝑉 − 𝑘𝑏𝜑̇ 

𝐽𝜑̇ + 𝑏𝜑̇ = 𝑘𝑡𝑖𝑎  

(6) 

 Where 𝑅𝑎 is the internal resistance of the motor, 𝑖𝑎 is the electrical current, 𝑘𝑏 is the 

electromotive force constant, 𝑘𝑡 is the torque constant and b is the viscous friction. V is the 

voltage applied to the armature, and the same can be considered as a control parameter of the 

motor.  

Substituting the Eq. (6) in the Eq. (5) and making some considerations, the equations 

representing the electromechanical system become: 

𝑀𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 − m𝑟(𝜑̇2𝑠𝑒𝑛 𝜑 + 𝜑̈ cos 𝜑) = 0 

(𝐽 + m𝑟2)𝜑̈ − m𝑟𝑥̈ cos 𝜑 = 𝐾𝑡𝑖𝑎 − 𝑏𝜑̇ 

𝑑𝑖𝑎

𝑑𝑡
=

𝑉 − 𝐾𝑏𝜑̇ − 𝑅𝑎𝑖𝑎

𝐿𝑎
 

(7) 
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2.2 Numerical simulations for the nonideal system 

For the simulations, the system (7) can be represented in state space like showed in the 

Eq. (8), where are considered that 𝑥1 = 𝑥;  𝑥2 = 𝑥̇;  𝑥̇2 = 𝑥̈ ; 𝑥3 = 𝜑; 𝑥4 = 𝜑̇;  𝑥̇4 = 𝜑̈  𝑥5 =

𝑖𝑎;   𝑥̇5 =
𝑑𝑖𝑎

𝑑𝑡
; and 𝑢 = 𝑉. 

𝑥̇1 = 𝑥2 

𝑥̇2 = −
𝑐𝑥2

𝑀
−

𝑘𝑥1

𝑀
+  

 𝑚2𝑟(𝑥4
2𝑠𝑒𝑛 𝑥3 + 𝑥̇4 cos 𝑥3)

𝑀
 

𝑥̇3 = 𝑥4 

𝑥̇4 =
𝐾𝑡𝑥5

(𝐽 + 𝑚2𝑟2)
−

𝑏𝑥4

(𝐽 + 𝑚2𝑟2)
+   

𝑚2𝑟𝑥̇2 cos 𝑥3

(𝐽 + 𝑚2𝑟2)
 

𝑥̇5 =
𝑢

𝐿𝑎
−

𝐾𝑏𝑥4

𝐿𝑎
−  

𝑅𝑎𝑥5

𝐿𝑎
 

      

(8) 

The parameters utilized for the simulations are shown in the Table 1. 

Table 1. Simulation Parameters  

Parameter Symbol Value 

Total Mass 𝑀 0,1278 [kg] 

Unbalanced mass 𝑚 0.005 [kg] 

Stiffness Constant 𝑘 400 [N/m] 

Damping constant 𝑐 0.0771 [Ns/m] 

Armature resistance 𝑅𝑎 51 [Ω] 

Eccentricity of the shaft 𝑟 0.015 [m] 

Inertia of the motor 𝐽 0.9x10
-6 

[kgm
2
] 

Viscous friction 𝑏 2.82x10
-6 

[Nms/rad] 

Armature inductance 𝐿𝑎 0.004 [H] 

Motor torque constant 𝐾𝑡 0.06619 [Nm/A] 

Back EMF constant 𝐾𝑏 0.06619 [Vs/rad] 

 

Figure 2 displays two graphics for the analysis of the system. Figure 1 (a) shows the 

frequency response diagram for the Sommerfeld Effect, showing the jump phenomenon and is 

influence in the angular frequency of the motor. Figure 1 (b) show the jump phenomenon due 

to the applied voltage on the electric motor. The two graphics are based in the amplitude of 

the vibration.  
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Figure 2. (a) Frequency response diagram for the Sommerfeld Effect, (b) Jump phenomenon due to the 

applied voltage 

3  SHAPE MEMORY ALLOY 

3.1 Mathematical model 

The SMA has the ability to change their physical form when the temperature of the 

system is changed between the phase transformation temperatures. This feature allows using 

these materials as actuators to vibration suppress (De Lima, et al., 2016). 

Over time, several mathematical models have emerged to represent the effects of the 

shape memory materials. In this work, the model proposed by Falk (1980) is applied to 

represent the actuator. This model considers a free energy in a polynomial form. The potential 

of free energy can be described in conjunction with the Helmholtz free energy (𝜓) as 

described by Eq. (9). 

𝜌𝜓(𝜀, 𝑇) =
1

2
(𝑇 − 𝑇𝑀)𝜀2 −

1

4
𝑏𝜀4 +

𝑏2𝜀6

24𝑞(𝑇𝐴 − 𝑇𝑀)
 (9) 

Where, 𝑇𝐴 is the temperature of austenite phase, 𝑇𝑀 is the temperature of martensite 

phase and 𝜀 is the strain of the material. For a Cu-Zn-Al-Ni alloy the constants have the 

following values: 𝑏=1.868x10
7
[MPa], q=523.29[MPa/K], TA=364.3[K] and TM=288[K] (Savi 

et al., 2002). 

The constitutive equation for the stress of the SMA is given by the Eq. (10) (Piccirilo, 

2007) 

𝜎 = 𝑞(𝑇 − 𝑇𝑀)𝜀 − 𝑏𝜀3 +
𝑏2𝜀5

4𝑞(𝑇𝐴 − 𝑇𝑀)
 (10) 

Where the SMA can be coupled in a beam structure as a stiffness as showed in the Fig 3. 

The equation that represents this coupling is given by (De Lima, et al., 2016): 

𝑘(𝑥, 𝑇) = 𝑞̅(𝑇 − 𝑇𝑀)𝑥 − 𝑏̅𝑥3 + 𝑒̅𝑥5 (11) 

Where: 𝑞̅ =
𝑞𝐴𝑟

𝐿
, 𝑏̅ =

𝑏𝐴𝑟

𝐿3  and 𝑒̅ =
𝑞𝐴𝑟

𝐿5 . 
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Figure 3. (a) Nonideal system – Physical model with SMA, (b) Nonideal system – Mathematical model 

with SMA 

3.2 Numerical simulations for the nonideal system with an SMA actuator 

Different temperatures are applied to observe the influence of the SMA over the system. 

All applied temperatures are considered above the austenite temperature (𝑇𝐴), where the 

following relation is made: 

∆𝑇 = (𝑇 − 𝑇𝑀) (12) 

Tests are made for seven different temperatures (∆𝑇(𝐾) = 80, ∆𝑇(𝐾) = 100, ∆𝑇(𝐾) =
120, ∆𝑇(𝐾) = 140, ∆𝑇(𝐾) = 160, ∆𝑇(𝐾) = 180 and ∆𝑇(𝐾) = 200). All the results present 

a comparative with the system without the SMA coupling. The parameters for the nonideal 

system are the same used in the system without the SMA, and considering the parameters for 

the SMA as: 𝑞̅ = 1.56987, 𝑏̅ = 114367.348 and 𝑒̅ = 7232491.36 (Janzen et al., 2015). 

The Fig. (4) shows the results considering ∆𝑇(𝐾) = 80. 

 

Figure 4. (a) Frequency response diagram for the Sommerfeld Effect, (b) Jump phenomenon due to the 

applied voltage 

In Fig. (5) the results considering ∆𝑇(𝐾) = 100 are presented. 
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Figure 5. (a) Frequency response diagram for the Sommerfeld Effect, (b) Jump phenomenon due to the 

applied voltage 

The Fig. (6) presents the tests made with ∆𝑇(𝐾) = 120. 

 

Figure 6. (a) Frequency response diagram for the Sommerfeld Effect, (b) Jump phenomenon due to the 

applied voltage 

The Fig. (7) shows the results considering ∆𝑇(𝐾) = 140. 

 

Figure 7. (a) Frequency response diagram for the Sommerfeld Effect, (b) Jump phenomenon due to the 

applied voltage 

In Fig. (8) the results considering ∆𝑇(𝐾) = 160 are presented. 
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Figure 8. (a) Frequency response diagram for the Sommerfeld Effect, (b) Jump phenomenon due to the 

applied voltage 

The Fig. (9) shows the results considering ∆𝑇(𝐾) = 180. 

 

Figure 9. (a) Frequency response diagram for the Sommerfeld Effect, (b) Jump phenomenon due to the 

applied voltage 

Finally Fig. (10) shows the results considering ∆𝑇(𝐾) = 200. 

 

Figure 10. (a) Frequency response diagram for the Sommerfeld Effect, (b) Jump phenomenon due to the 

applied voltage 
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As can be seen from the results, the SMA coupling causes a reduction in the vibration 

amplitude of the system. One can also see a reduction in the motor voltage where the jump 

phenomenon occurs. 

In Fig. (11) a comparison for the frequency diagram between all temperatures previously 

tested is presented.   

 

Figure 11. Comparative frequency diagram for all SMA temperatures tested 

 

The Fig. (12) shows a comparison for the voltage diagram between all temperatures 

previously tested.  

 

Figure 12. Comparative voltage diagram for all SMA temperatures tested 
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4  CONCLUSIONS 

 This work have presented numerical simulations of the use of a shape memory material 

to attenuate the vibration in a nonideal system. The system has its mathematical model 

obtained thought the use of the Lagrange equations. It is possible to observe in the numerical 

simulations that the Sommerfeld effect, which depends of the vibrations of the system, was 

significantly reduced by changing the SMA temperature. The variation of the temperature in 

the SMA causes physical changes in the material, which produces a force capable of handling 

the system. To investigate the influence of the SMA in the system, tests were performed at 

various temperatures, where the results are compared at the end. The results showed the 

viability in the use of this kind of material to attenuate the Sommerfeld Effect. 
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