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Abstract. Although strong seismic events are rare in Brazil, Brazilian structural engineers are 

frequently involved in such analysis for neighboring Latin American countries. Here, we 

present a study on the linear seismic response of a shear building mathematical model of a 

tall building. Step-by-step numerical time integration via Finite Differences is implemented to 

solve the ordinary differential equations of motion. Seismic base excitation, of random nature, 

is not, in general, available. Usual National Building Codes for seismic resistant 

constructions don’t provide design base accelerograms to compute the inertia forces at each 

pavement of the building. The standard information is the so called elastic design spectrum, 

that provides the maximum response acceleration for a one degree of freedom linear damped 

system for each country. Much research is being developed in order to generate artificial 

base motion accelerograms compatible with these Code spectra. We presented a proposal for 

generating artificial base motion accelerograms compatible with the Brazilian National Code 

for Seismic Resistant Building. A base motion accelerogram generate according to our 

proposal was applied to a 10-store shear building model. 
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1  INTRODUCTION 

Although strong seismic events are rare in Brazil, Brazilian structural engineers are 

frequently involved in such analysis for neighboring Latin American countries. Here, we 

present a study on the linear seismic response of a shear building mathematical model of a tall 

building. Step-by-step numerical time integration via Finite Differences is implemented to 

solve the ordinary differential equations of motion.  

Information on seismic base excitation, of random nature, is not, in general, available. 

Usual National Building Codes for seismic resistant constructions don’t provide design base 

accelerograms to compute the inertia forces at each level The standard information is the so 

called elastic design spectrum, that provides the maximum response acceleration for a one 

degree of freedom linear damped system for each country. Much research is being developed 

in order to generate artificial base motion accelerograms compatible with these Code spectra. 

We presented a proposal for generating artificial base motion accelerograms compatible with 

the Brazilian National Code for Seismic Resistant Building. 

A base motion accelerogram generate according to our proposal was applied to a 10-store 

shear building model. 

2  THE MATHEMATICAL MODEL 

2.1 The structural model 

We will consider the 10 stores shear building model of Fig. 1, excited by seismic base 

motion in just one direction. In such a model, the pavements are considered rigid and the 

columns don’t change their original length. Thus, only horizontal motions are possible, 

resulting just one degree of freedom per store. 

 

 

Figure 1. A 10 stores shear building model 
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 In Fig. 1: 

ui = store i horizontal displacement, (m), 

mi = store i lumped mass, (ton), 

wi = inertia force at level i, equal to the mass mi times the base acceleration, (KN), 

ki = . store i stiffness, (KN/m). 

 Dynamic equilibrium at level i is given by Fig. 2. 

 

 

Figure 2. Dynamic equilibrium at level i 

Resulting equation of motion at level i, is: 

                                       𝑚𝑖𝑢̈𝑖 − 𝑘𝑖𝑢𝑖+1 + (𝑘𝑖 + 𝑘𝑖+1 )𝑢𝑖 − 𝑘𝑖+1𝑢𝑖+1 = 𝑤𝑖  (1) 

If all pavements have the dame mass, the resulting (diagonal) mass matrix is 

 

[𝑚] =

[
 
 
 
 
 
 
 
 
 
𝑚 0 0 0 0 0 0 0 0 0
0 𝑚 0 0 0 0 0 0 0 0
0 0 𝑚 0 0 0 0 0 0 0
0 0 0 𝑚 0 0 0 0 0 0
0 0 0 0 𝑚 0 0 0 0 0
0 0 0 0 0 𝑚 0 0 0 0
0 0 0 0 0 0 𝑚 0 0 0
0 0 0 0 0 0 0 𝑚 0 0
0 0 0 0 0 0 0 0 𝑚 0
0 0 0 0 0 0 0 0 0 𝑚]

 
 
 
 
 
 
 
 
 

     (2) 

  

and the (banded) stiffness matrix is: 

 

[𝑘] =

[
 
 
 
 
 
 
 
 
 
2𝑘 −𝑘 0 0 0 0 0 0 0 0
−𝑘 2𝑘 −𝑘 0 0 0 0 0 0 0
0 −𝑘 2𝑘 −𝑘 0 0 0 0 0 0
0 0 −𝑘 2𝑘 −𝑘 0 0 0 0 0
0 0 0 −𝑘 2𝑘 −𝑘 0 0 0 0
0 0 0 0 −𝑘 2𝑘 −𝑘 0 0 0
0 0 0 0 0 −𝑘 2𝑘 −𝑘 0 0
0 0 0 0 0 0 −𝑘 2𝑘 −𝑘 0
0 0 0 0 0 0 0 −𝑘 2𝑘 −𝑘
0 0 0 0 0 0 0 0 −𝑘 2𝑘 ]

 
 
 
 
 
 
 
 
 

   (3) 
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The matrix equation of motion is 

          wukucum           (4) 

considering a given viscous damping matrix [c]. 

2.2 Time step-by-step numerical integration 

Ordinary differential Eq. (4) will be numerically integrated in time using the following 

Central Finite Difference approximations for the velocity and acceleration vectors, at a time 

ti:, with step h long: 
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The resulting recurrence formula for each time step is 
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Algorithm of Eqs. (7) to (9) is not self-starting, as in the origin (initial time) one doesn’t 

have the displacements in the previous step. A possible starting scheme is to compute the 

initial acceleration from the given initial displacements and velocities and consider it to 

remain constant along the first time step, resulting a uniformly accelerated motion. 

3  DETERMINATION OF AN ARTIFICIAL BASE ACCELEROGRAM 

Usual National Building Codes for seismic resistant constructions don’t provide design 

base accelerograms to compute the inertia forces wi. The standard information is the so called 

elastic design spectrum, that provides the maximum response acceleration for a one degree of 

freedom linear damped system for each country. Much research is being developed in order to 

generate artificial base motion accelerograms compatible with these Code spectra. We 

propose one possible solution in the following. 

The method is based on the fact that any periodic function can be expressed as a 

superposition of sine waves modulated by an envelope function defining the temporal shape 

of the ground acceleration. 

 ii

n

i

i tAtFta   


sin)()(
1

         (10) 

where  

a(t) is the artificial accelerogram sought.  
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n = it is a given number that increasing improves compatibility of the spectrum to give 

more "wealth" in the signal frequencies, 

F(t) = to simulate the transitory nature of real earthquakes, a function of predefined 

deterministic intensity envelope F(t) is used, 

θi = the random nature of the signal is modeled by the phase angles θi are generated 

taking random values between 0 y 2π, 

ωi = the frequencies ωi are chosen at regular intervals within a specified range, so that the 

record contain the entire desired frequency range, 

Ai = the artificial signal a(t) it is compatible with the response spectrum because the Ai 

are calculated from the stationary function of power spectral density GÜg(ω) obtained, in turn, 

from response spectrum Sa(T). 

3.1 Calculating amplitudes 

It is known that in a given random function with a stationary zero mean process, the 

variance of the function is equal to the total power spectral density function (Barbat et 

al.,1994) 

 dG
Üg

Üg
)(

0

2




          (11) 

moreover, the variance of a sinusoidal function, given by 

)sin()( tAtÿ            (12) 
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2
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Consequently, the total power of the process defined by equation Eq. (10) according to 

Eqs. (11) and (13) is: 
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Approximating the total power as the integral of the area under the curve )(
Üg
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This expression that is valid only when the number of sinusoids n in the function that 

defines the process a(t) is large. 

Since the power spectral density represents the relative contribution of each frequency 

ωi, one can accept the hypothesis of equal addends in Eq. (15):   

2
)(

2

i
iiÜg

A
G            (16) 

therefore, the said function can be calculated, amplitudes defined in Eq. (10) as 

iiÜgi GA   )(22           (17) 
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3.2 Standard elastic response spectrum 

The Brazilian standard NBR 15421:2006 defines the seismic actions providing maximum 

expected response of a linear system of one degree of freedom (SDOF) in terms of the 

response spectrum of pseudo-acceleration. The response spectrum represents the largest 

absolute value of a selected response parameter (displacement, velocity or acceleration) that a 

system of one degree of freedom reaches during the earthquake design, varying the natural 

frequencies and damping ratios.  

The Brazilian Code NBR 15421:2006 defines the criteria for obtaining design response 

spectrum for horizontal accelerations, for a fraction of critical damping of 5% from the 

horizontal characteristic seismic acceleration and the site soil class. The response spectrum is 

then defined numerically in three ranges of periods, by the expressions: 


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    (18) 

where: 

T = natural period of vibration, associated with each of the modes of vibration of the structure, 

Sa(T) = is the response spectrum pseudo-accelerations, 

Ca = is the seismic soil amplification factor, for the period T= 0.0s, 

Cv = is the seismic soil amplification factor, for the period T= 1.0s, 

ags0 = is spectral acceleration for the period T=0.0s, 

ags1 = is spectral acceleration for the period T=1.0s. 

The latter quantities are calculated by: 

gags aCa 0            (19) 

gvgs aCa 1            (20) 

where: 

ag = it is the horizontal seismic acceleration feature for a region, normalized to land Class B 

(rock), obtained from the national seismic map. 

Figure 3 shows the type of design response spectrum, normalized by the acceleration of 

zero periods (Sa/ags0) according to the period: 
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Figure 3. Design response spectrum (ABNT NBR 15421:2006) 

The seismic soil amplification factors can be obtained, depending on the terrain in Table 

1, linear interpolation used to obtain intermediate values between 0.10g e 0.15g. The 

categorization of the site soil class is associated with the propagation velocity of shear waves 

( sV ) in the ground 30 meters higher, from Table 2. It is also allowed the classification, in 

some cases, from the average results of the SPT ( N ). 

Table 1. Seismic soil amplification factors (ABNT NBR 15421:2006) 

 

Table 2. Classification of soil (ABNT NBR 15421:2006) 

 

NBR 15421:2006 allows the engineer to represent the seismic ground motion by artificial 

accelerograms. However, the code does not define the PSD, requiring it to be compatible with 
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the response spectrum specified and providing conditions for this compatibility is achieved. In 

particular, a PSD function GÜg(𝜔), of the ground acceleration is considered compatible with 

an assigned acceleration RS, Sa (T), if a SDOF system with an assigned damping ratio, 

subjected to accelerogram samples generated from GÜg(𝜔), experiences an absolute 

maximum acceleration Sa (T) for each value of the natural period T into a time window of the 

nominal duration of the pseudo-stationary part Ts of the earthquake (Baroni et al., 2015). 

The spectral acceleration can also be expressed as: 

),(),(),( 2  UUaS          (21) 

The pick factor U (Vanmarcke, 1972 apud Baroni et al., 2015) is defined 

]})))(2ln()(exp(1)[(2ln{2),( 2.1  UUUU NN      (22) 

Despite the system response is not previously known, the parameter NU(𝜔) and the factor 

of spreading δU(ξ) can be expressed by the following approximate expressions (Kiureghian, 

1980 apud Baroni et al., 2015): 
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The parameter  assumes the value 0.5 when the average value of peak values can be 

approximated by half the maximum distribution. For ξ=0.05, δU(ξ)=0.24561. Once known 

PSD, the response spectrum can be easily found. However, the inverse problem is not easy 

because of the high nonlinearity of equation Sa(𝜔,ξ). To overcome this problem, an 

approximate expression for the response variance can be used (Vanmarcke, 1977 apud Baroni 

et al., 2015) to determine the PSD: 
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3.3 Generation of function of power spectral density (PSD) compatible 

with the response spectrum (RS) standard. 

Determining the function of power spectral density from a response spectrum has been a 

considerable effort. The objective is to calculate a function for an unknown signal a(t) from 

the horizontal seismic acceleration. In this paper it is used an approximate analytical method 

proposed by Barone et al.(2015). This method is compatible with fairly generic forms of 

response spectrum and can be used for spectral response of various international standards of 

earthquakes. 

In order to define an analytical PSD function, extensive numerical campaign was carried 

out varying the intensity and shape of designated RS and evaluating the corresponding PSD. 
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It was observed that the method always returned PSD's with the format in Fig. 4 (Barone et 

al.,2015: 

 

Figure 4. PSD compatible with response spectrum 

Therefore, one may describe the PSD as a function with three intervals and a simple 

mathematical structure and completely defined by only a few parameters determined from the 

exact equation GÜg(𝜔), where G0 pick value of the PSD to 𝜔 = 𝜔C: 
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To determine the exponent e1, the Eq. (25) is, at first, rewritten for the frequency 𝜔=𝜔C 
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and substituting the Eq. (27) into the integral term: 
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Then, following the same reasoning, but considering a new frequency 𝜔 = 𝜔C/ρ(ρ>1), the 

following expression is obtained: 
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Comparison of Eqs. (29) and (30) and considering the limit ρ=1, it can be demonstrated 

that the exponent e1 can be expressed in closed-form as: 

)(21 DLe             (31) 

where the function L(𝜔) is defined as: 
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The evaluation of the closed-form expressions for the other parameters is based on the 

same concepts, but considering points on the other three branches of the PSD. After some 

algebra, the following set of parameters is obtained: 
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The resulting artificial acceletogram is presented in Fig.5 , 
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Figure 5 : Artificial accerogram 

4  SIMULATION RESULTS AND DISCUSSION 

Next, using a MATLAB program based on Finite Difference approximations, we 

simulate the response horizontal displacements of the top store of the building as function of 

time, in Fig,6. 

 

Figure 6: Top store displacements time history 

Top pavement maximum horizontal displacement was found to be 4 cm with an 

approximated 1.5 s period of vibrations, corresponding to a frequency of 4.2 rad/s. Thus, 

maximum acceleration at top pavement can be estimated to be around 0.7 m/s². 
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5  CONCLUSIONS 

We presented a proposal for generating artificial base motion accelerograms compatible 

with the Brazilian National Code for Seismic Resistant Building. 

A base motion accelerogram generate according to our proposal was applied to a 10-store 

shear building model and the resulting equations of motion were step-by-step time integrated 

using a Central Finite Difference algorithm.  
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