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Abstract. It is intended, in this paper, to develop a mathematical model of an elastic space 

rocket structure as a Beck’s column excited by a follower (or circulatory) force. This force 

represents the rocket motor thrust that should be always in the direction of the tangent to the 

structure deformed axis at the base of the vehicle. 

We present a simplified two degree of freedom rigid bars discrete model. Its system of two 

second order nonlinear ordinary differential equations of motion are derived via Lagrange’s 

energy method, allowing for a general understanding of the main characteristics of the 

problem. The proposed equations consider up to third order (cubic) inertia, stiffness and 

forcing terms.  

Among other rich nonlinear dynamic behavior of this model, depending on parameters and 

initial conditions choices, either stable or unstable limit cycle solutions are possible. The 

unstable solution is, of course, an interesting simple example of flutter instability. 

Keywords: Beck’s column, follower force, nonlinear dynamics, flutter.  
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1  INTRODUCTION 

Launcher vehicles (popularly known as rocket) are essential devices to carry loads from 

the surface of the Earth to some orbit around it, whatever is the current space mission. The 

vehicle, like any other physical body, is not absolutely rigid, so that the structural behavior, 

via excitation by external loads, tends to affect the flight dynamics. 

It is intended, in this paper, to develop a mathematical model of an elastic space rocket 

structure as a Beck’s column excited by a follower (or circulatory) force. This force represents 

the rocket motor thrust that should be always in the direction of the tangent to the structure 

deformed axis at the base of the vehicle. 

We present a simplified two degree of freedom rigid bars discrete model. Its system of 

two second order nonlinear ordinary differential equations of motion are derived via 

Lagrange’s energy method, allowing for a general understanding of the main characteristics of 

the problem. The proposed equations consider up to third order (cubic) inertia, stiffness and 

forcing terms.  

Among other rich nonlinear dynamic behavior of this model, depending on parameters 

and initial conditions choices, either stable or unstable limit cycle solutions are possible. The 

unstable solution is, of course, an interesting simple example of flutter instability. 

Our model compares very well with previous work by Mazzilli (1988) in the context of 

Civil Engineering. Timoshenko (2009) also presents an analytical solution of the fourth order 

partial differential equation of motion of Beck’s column. 

2  PHYSICAL MODEL 

2.1 The physical model 

Figure 1 is our simplified physical model of the structure of a launcher vehicle. It is 

constructed of two rigid massless bars ABand BC , 1L and 2L  long, respectively, pinned to 

nodes A and B . Displacements are restricted at point A . We consider lumped masses 1M , 2M  

and 3M attached to nodes A and B where torsional springs 1k e 2k provide elastic restoring 

forces. 

 



L.F. Brejão, R.M.L.R.F. Brasil 

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

 

Figure 1. Physical model at rest position. 

2.2 Modeling hypothesis 

1. It is adopted 1L 2L L  . 

2. The bars are rigid and massless. 

3. Lumped masses 1M , 2M  and 3M  represent the actual masses of half the bars 

connected to that point. If 2m  is the mass of each bar, M1 = M3 = m and M2 = 2m. 

4. We consider the stiffness of the torsional springs to represent the elastic properties 

of the continuous structure. It is adopted k1 = k2 = k.  

5. The adopted inertial reference is point A, origin of an orthonormal basis 

 ji ˆ,ˆIB , where 









0

1
î  and 










1

0
ĵ  are the unit vectors. 

6. Motions are restricted to the xy plan. 

7. Initially, only self-weight forces act. This is the fundamental static equilibrium 

configuration of the system, representing the vehicle at rest in its launch platform. 

2.3 Excitation 

       Let F


be a follower (circulatory) non conservative force applied to C, in the direction of 

bar BC . This force models the rocket’s thrust force due to combustion gases expansion at the 

motors in the basis of the vehicle. We do not consider, in this model, its dependence on time.  

      The action of force F


 applied to C excites the system to depart from its fundamental 

equilibrium position. The problem is now similar to an excited inverted double-pendulum 

with elastic properties.  
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 The equations of motion could be derived via Newton’s second law vector approach, 

but this method is quite cumbersome in this case. Thus a Lagrangian scalar energy scheme is 

preferable.  Our generalized coordinates are angular displacements 1 e 2 of bars ABe BC , 

computed from their original vertical equilibrium positions. They are, of course, implicitly 

time dependent, that is,  t11    and  t22   . We denote    tqt 11  and    tqt 22  . 

Nonzero values represent the vehicle in flight conditions as represented in Fig, 2.  

 

 

Figure 2. System motion under follower force F


. 

3  MATHEMATICAL MODEL 

3.1 Kinematics 

3.1.1 Position vectors of the lumped masses 

       Time dependent vector position of the masses along their motions are given by Eqs. (1), 

(2) and Eq. (3):  

01


r  (1) 
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 jqiqLr ˆcosˆsin 112 


 (2) 

    jqqiqqLr ˆcoscosˆsinsin 21213 


 (3) 

3.1.2 Velocity vectors of the lumped masses 

      Time derivatives, denoted by a superposed dot, lead to velocity vectors given by Eqs. (4), 

(5) and Eq. (6): 

01


 r  (4) 

 jqqiqqLr ˆsinˆcos 11112
   (5) 

    jqqqqiqqqqLr ˆsinsinˆcoscos 221122113
                     (6) 

 

3.2 Approximations 

      We adopt a third order truncated polynomial approximation to the sinusoidal functions, 

given by Maclaurin series around zero equilibrium conditions, considering not very large 

displacement angles.  
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 (7) 

3.3 Energy computation 

       In the following equations we neglect terms of higher order than third. 

3.3.1 Kinetic energy 

      Kinetic energy of this system is given by Eq. (8):   
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3.3.2 Total potential energy 

       The total potential energy is 

WUV   (9) 

where U is the strain energy of the springs and W is the work of the conservative forces acting 

on the system, namely the self-weight of the lumped masses. 

        The strain energy, in terms of the generalized coordinates is given by Eq. (10): 

 21

2

2

2

1 22
2

1
qqqqkU   (10) 

       The work of the conservative forces in terms of the generalized coordinates is given by 

Eq. (11): 

 2

2

2

13
2

1
qqmgLW   (11) 

       Thus, the total potential energy is 

    2

2

2

121

2

2
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1 322
2

1
qqmgLqqqqkV   (12) 

3.4 Derivation of the equations of motion 

      Next, we apply Euler-Lagrange equations, Eqs. (13) and (14), following Brasil (1996): 
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 (13) 

where 


 


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N

j

j

i
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j
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i r
q

fF
1


 (14) 

i = 1,2 refer to the generalized coordinates and j = 1,2 e 3 to the nodes where lumped masses 

are connected. 

      The Lagrangian, a functional of the generalized coordinates, is given by Eq. (15): 

     2121212121 ,,,,,,, qqVqqqqTqqqq   L L  (15) 

      The two differential equations of motion are of the form: 
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(16) 

 

      The Lagrangian functional in terms of energies is: 

       212121212121 ,,,,,,,, qqWqqUqqqqTqqqq  L  (17) 

rendering Eq. (18): 
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3.4.1 Derivation 

       For the first generalized coordinate: 
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      For the second generalized coordinate: 
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  221

2

, mgLqqqW
q





  (26) 

3.4.2 Generalized non-conservative forces 

         The generalized non conservative forces, due to the follower force F


 are shown in Eqs. 

(27) and (28): 

021


 ncnc ff  (27) 

 jqiqFf nc ˆcosˆsin 223 


 (28) 

       Plugging Eqs. (3), (27) and (28) in Eq. (14), and considering approximations given by Eq. 

(7): 
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02 ncF  (30) 

where F is the scalar value of the follower force. 

3.5 Matrix equations of motion 

      The equations of motion of this system may be presented in matrix form as 

                 
2,1



i

tFtqKtqCtqM nc

iiii


    (31) 

Where  M  is the inertia or mass matrix,  C  is the equivalent damping matrix and  K  is the 

stiffness matrix.   tqi ,   tqi
  and   tqi

  are, respectively the generalized position, velocity 

and acceleration vectors.     tqM i
  are inertia forces,     tqC i

  dissipative forces,     tqK i  

restoring forces and   tF nc

i  is the vector of non-conservative generalized forces. 

      From Eqs. (19) at (26), we get: 
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the symmetric inertia matrix that may be put in form: 

     qMMM 
~

 (33) 
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where  M
~

 is the constant part of  M  , and     21,qqMM qq   is a part of the matrix that 

depends on the time varying generalized coordinates  1q   and 2q .Thus: 
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    The symmetric equivalent damping matrix: 

    
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      We note that     2121 ,,, qqqqCC   depends on the generalized coordinates 1q  and 2q , 

and their time derivatives. 

      Finally, the symmetric stiffness matrix is: 
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        Considering  UK  the elastic component (related to the strain energy of the torsional 

springs) and  WK  a component related to the conservative forces actin on the system, we 

have: 

     WU KKK   (38) 

       Thus: 
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     Both  UK  and  WK  are also symmetric. 

     The final matrix equations of motion are: 
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      or: 
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4  CONCLUSIONS AND FUTURE WORK 

 We presented the derivation of a two degrees of freedom lumped parameters 

mathematical model of an elastic rocket launching vehicle excited by a follower force due to 

the its motors thrust. Its system of two second order nonlinear ordinary differential equations 

of motion are derived via Lagrange’s energy method, allowing for a general understanding of 

the main characteristics of the problem. The proposed equations consider up to third order 

(cubic) inertia, stiffness and forcing terms.  

 In further work, numerical step-by-step time integration of the equations of motion of 

the mathematical model is carried out via Runge-Kutta fourth order algorithm in order to 

study the dynamic stability regions of the problem. For application of the Runge-Kutta 

integration scheme, a state space system of four first order nonlinear ordinary differential 

equations will be derived from the original equations of motion. 
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 Among other rich nonlinear dynamic behavior of this model, it is shown that, 

depending on parameters and initial conditions choices, either stable or unstable limit cycle 

solutions are possible. The unstable solution is, of course, an interesting simple example of 

flutter instability. 

 Some thought will also be given to possible control strategies of the resulting 

vibrations, a crucial problem when real rocket motions are considered. 

 We will also solve the exact analytical solution to the fourth order partial differential 

equation governing the motion of an elastic space rocket structure under follower force 

excitation. Last, a Finite Element Method numerical model of the problem will be developed 

and solved in order to find the solution approached by the simple two degree of freedom 

model presented in this paper. Comparisons will be carried out and expected to be very good. 
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