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Abstract. The success of a space mission where the satellite must perform rapid attitude 

maneuvers with great angles is extremely dependent of a careful investigation of the 

nonlinear dynamics of the satellite. Since these big maneuvers imply in the dynamic coupling 

between the satellites angular motion and the actuators such as reaction wheels and/or gas 

jets. As a result, this coupling must be taking into account in the Attitude Control System 

(ACS) design. This paper presents the nonlinear model derivation of a rigid satellite and the 

performance comparison of two controllers designed by Lyapunov and LQR methods. The 

dynamics of the satellite is initially derived in the non-linear Euler equations form and the 

kinematics is based on the quaternion parametrization which represent the rotation and 

attitude motion, respectively. In the sequel, the linear model is obtained where linearization is 

about an operating point of the arbitrary angular velocity and the reaction wheel angular 

momentum. From this model, several simulations are performed in order to investigate the 

influence of the nonlinear dynamics in the in the SCA performance which is designed by trial 

and error and by the Linear Quadratic Regulator approaches.  The ACS performance is 

evaluated considering the capacity of the reaction wheels to maintain the stability and to 

control the angular velocity and the attitude of the satellite. The stability is investigated 

comparing the location of the poles and zeros of the open and closed loops. The ACS 

performance is evaluated comparing the amount of energy spend by each control law.  
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1  INTRODUCTION 

Currently the space missions are increasingly complexity due to its different tasks and due to 

the satellites structures with large number of solar panels, antennas, cameras and mechanical 

manipulators (Mainenti, et al, 2016). Such complexity results in mathematical models with non-

linear dynamics. Therefore, the nonlinear terms play an important role in understanding the 

dynamics and performance of the attitude control system (ACS) of the satellite. Other 

important aspects in the study of the dynamics and control of structures in space are: the 

degree of interaction between the rigid and flexible movement, maintenance of SCA 

performance in the presence of model uncertainties, evaluation of control strategies to reduce 

residual vibrations in order to maintain the precision pointing and identification of system 

parameters such as vibration frequency, damping coefficient (Sidi, 1997) and liguid motion 

(Souza and Souza, 2014).  Generally the ACS design involves sensors, estimators, actuators 

and controllers which the interface is the onboard computer. The key point to have an ACS 

with good performance for a satellite with nonlinear dynamics is to design a simplest as 

possible control law. Actuators used in the ACS are generally the reaction wheels that 

generate torques (linear) continuous and the gas jets that generate non-continuous torques 

(non-linear) (Pinheiro and Souza, 2014). In this paper one presents the derivation of satellite 

mathematical model using as actuators three reaction wheels so as the equations of motion are 

nonlinear (Curtis, 2010).  The control law of the ACS is first designed by the Lyapunov 

approach (Junkins and Turner, 1986) which adopts a Lyapunov function proportional the 

kinetic energy. The second controller is designed using the theory of Linear Quadratic 

Regulator (LQR) (Souza, 2006). After that one compares the performance of the Lyapunov 

and LQR controller in order to evaluate the influence of the nonlinear dynamic in the 

controller performance. The linear model is associated with the normal operation mode the 

satellite when the angles and angular velocities are small. Some aspects related with the 

weight matrix Q and R of LQR and the performance of the control law are investigated 

having as performance criteria the overshoot and the settling time.  

2  SATELLITE EQUATIONS OF MOTIONS 

Three reference systems are relevant in the attitude control of an artificial satellite. The first, 

called "reference (almost) inertial" is a system with origin in the center of mass of the Earth 

and whose axis: X points to the Vernal Equinox (at the intersection of the Earth's equator 

plane to the plane of the ecliptic); Z points in the direction and sense of vector earth angular 

velocity; Y form a direct trihedral XYZ, (see Figure 1.a). The second, called "orbital frame 

referential" is a system with origin in the center of mass of the Earth, coinciding with one of 

the focus of the ellipse whose axes X0 and Y0 are contained in the satellite orbit plane being: 

X0 in the direction and sense that focus to direct trihedral X0Y0Z0 (Figure 1.b)., The third, 

called "satellite referential frame " is a system with origin in the center of mass of the satellite, 

with the axes x, y and z mutually perpendicular, fixed on the satellite body and conducted on 

its three main axes of inertia (Figure 1.c). 
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Figure 1-  Inertial Frame (a)                   Orbital Frame (b)                          Satellite frame (c). 

 

The equations that describe the dynamics of satellite motion relative to the inertial frame 

referential (X,Y,Z), are obtained considering that the total torque (N) acting on the satellite, 

which is the sum of external torques (due to the environment) (Ne) and the control torque (Nc) 

from the reaction wheel. The dynamic equation of the satellite (Blake and Larsen, 2010) can 

be obtained deriving the with respect time the total satellite angular momentum H given by  

                                                                                                                                 (1) 

where , is the satellite  plus the reaction wheel angular moment,  respectively;  

 is the satellite matrix moment of  inertia,   is the satellite angular velocity. As a result, 

after some derivation one has  

                                                                                     (2) 

Writing the vector product in the matrix form  to simply notation one has 

 

 

(3) 

Replacing the matrix   into Eq.3 one has  

 
 

(4) 

The satellite dynamics equation is completed by identifying that the control torque is due to 

the reaction wheel   

                                                                                                                                           (5) 

and replacing  into Eq.4 one has in the right hand side the angular acceleration of 

the satellite, given by  

                                          (6) 
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The satellite kinematics is represented by the quaternions q = (q1 , q2 , q3 , q4 ) which can be 

white in function of  the angular velocity  by  

 

q (7) 

Another way of describing the satellite kinematics is separating the scalar part of the 

quaternion vector  q4  from the other three quaternions elements, which defines the Gibbs 

vector represented by   ,  , .  As a result, the kinematic equation in terms of the 

Gibbs vector is  

                 :                                                                        (8) 

which in the compact form is given by  

 

                                                                                                 (9) 

Finally, the satellite kinematic in matrix form in terms of the quatenions is given by 

  

                                                 (10) 

In order to simulate the satellite dynamics by its angular velocity and attitude (Gibbs vector)  

one must uses Eq.10 plus Eq. (11) considering the external  torque    equal to zero. 

                                                                                (11) 

 

Considering the Lyapunov theory  (Junkins and Kim, 1993) the control law U can be given by  

      with   i=1,2,3                        (12) 

  

The linear model of the satellite can be obtained considering the angular deviation of the 

satellite in terms of Euler angles of Yaw (β) , Pitch (ψ) and Roll ( Φ) (Curtis,2010) are given 

by Eqs.13a,b,c (see Figure2). 

 
 

(13.a) 
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(13.b) 

 
 

(13.c) 

 

 

Figure 2 - Euler angles of Yaw (β) , Pitch (ψ) and Roll ( Φ). 

 

Assuming that the angular deviations are small, one can has  

                ;  ;                                                                                            (14) 

In order to simulates the linear model of the satellite, one defines the following state 

variables: 

 
      (15.a) 

 
     (15.b) 

 
 e   (15.c) 

Rewriting the equations 15a.b.c in the matrix form one has 

 
 

(16) 

where  

 

 

(17) 
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In this notation the state variables x = (w1 , w2 , w3 , β ,ψ  Φ) and U is the control variable, 

which when designed by the LQR technique, one must minimize the  performance index 

given by 

                                                                                         (18) 

 

  (19) 

That represents the weights related with the state and the control, respectively. 

 

3 – SELECTION OF WEIGHT MATRICES 

As for the simulation of the nonlinear satellite model and the design of its ACS using the 

Lyapunov theory by nonlinear feedback control law of  Eq.12 which  guarantees stability of 

the nonlinear closed-loop under the assumption of zero model errors. However, the 

determination of the particular gains values selection should be based on globally stabilization 

procedure (Junkins and  Kim, 1993) which is a bit more complicate. Therefore, the 

determination of the gains used here will be based on simpler performance optimization 

criteria like system overshot and stabilization time.   

As for the simulation of the linear satellite model and the design of its ACS using LQR theory 

one must understand the minimization of Eq. 18 which are function of the selection of the Q 

and R matrices. In order to do that one observes that an arbitrarily rapid reduction in the state 

can be achieved at the expense of an increase correspondingly large control, implying, in a 

practical impossibility to implement such a solution. Moreover, an arbitrarily large reduction 

in control may cause a significant elevation of the state, an undesirable situation in the attitude 

control process.  

As a result, the selection of gain of the Lyapunov control law and the weight matrices of the 

LQR method becomes an extremely laborious process. However, in simulation of both case 

the choice will be made through trial and error, verifying, which values of these gains and 

matrices best meet criteria such as overshot, maximum control energy and settling time, 

reflecting a better performance system.  

 

4 – SIMULATION RESULTS 

In the simulation the initial values for angles (rad) and angular velocities (rad/s) are (w1 = 0.1 

, w2 = -0.5, w3 = 0.1, β = 0 ,ψ = -0.1  Φ = 0.5). The values are for the in final phase of 

pointing of the TD-1A satellite (Cubillos, 2005). The moment of inertia (Kg.m
2 

) are Ix = 225, 

Iy = 207 , Iz = 121. 

Figures 3 & 4; 5 & 6 ; 7 & 8 show the variation of angles, angular velocities and control law 

energy  in the time function for the LQR controller  with weights matrices   λ1 … 6 = 1000; λ8 … 

9 = 0.1 and   λ1 … 6 = 1000 ; λ8 … 9 = 0.01, respectively.  
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Figure 3 and 4 – Angles in function of time of the LQR Controller 

 

 

Figure 5 and 6 – Angular velocities in function of time of the LQR Controller 
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Figure 7 and 8 – LQR control  law energy in function of time 

 

Figures 9 & 10; 11 & 12 ; 13 & 14 show the variation of angles, angular velocities and control 

law energy  in the time function for the Lyapunov controller  with weights matrices k0  = 1000 

; k1 … 3 = 100 and  k0  = 1000 ; k1 … 3 = 1000 , respectively.  

 

 

Figure 9 and 10 – Quaternions in function of time of the Lyapunov controller  
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Figure 11 and 12 – Angular velocities in function of time of the Lyapunov controller 

 

 

 

Figure 13 and 14 – Lyapunov control  law energy in function of time 

 

5- SUMMARY 

      From the results of the simulations it is possible to note that the performance of LQR 

controller is much better than the Lyapunov controller. Mainly, as for controlling the attitude 

and energy consumption. But it should be noted that the linear model used by LQR controller 

certainly does not represent the reality of the satellite since the basic dynamics of a satellite in 

rotation is 'given by the equations of Euler. Moreover, the fact that also calls attention in these 

simulations is the Lyapunov control law behavior, once it does not have its action taken to 
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zero, that is, it continues to operate in order to maintain the angular velocities of the satellite 

reduced. This fact also indicates that the nonlinear terms of the equations of motion still alive. 

Finally, it is important to remember that the results for both, the LQR controller and the 

Lyapunov controller are function  as the matrices weights, then better results can be achieved 

with other matrices weights. 
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