
UNSCENTED KALMAN FILTERS AND EXTENDED H∞ FILTER FOR
SPACECRAFT ATTITUDE ESTIMATION USING QUATERNIONS

William Reis Silva

reis.william@gmail.com

Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), CTA-ITA-
IEFM

Pr. Marechal Eduardo Gomes, 50, Vila das Acácias, CEP: 12228-900 , São José dos Campos,
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Abstract.

In this work, the attitude determination and the gyros drift estimation using the Uncented
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Kalman Filter (UKF) and the Second-Order Extended H∞ Filter (SOEH∞F) for nonlinear sys-
tems will be described. The extended H∞ filter provides a rigorous method for dealing with
systems that have model and noise uncertainties. Thus, extended H∞ filter is simply a robust
version of the extended Kalman filter because to add tolerance to unmodeled noise and dynam-
ics. The Unscented Kalman Filter transforms a set of points (cloud) through known nonlinear
equations and combines the results to estimate the mean and covariance of the state. The points
(called sigma-points) are carefully selected on the basis of a specific criterion. The application
uses the simulated measurement data for orbit and attitude of the CBERS-2 (China Brazil Earth
Resources Satellite). The attitude model is described by quaternions and the attitude sensors
available are two DSS (Digital Sun Sensors), two IRES (Infra-Red Earth Sensor), and one triad
of mechanical gyros.The results in this work show that one can reach accuracies in attitude
determination within the prescribed requirements, besides providing estimates of the gyro drifts
which can be further used to enhance the gyro error model.

Keywords: Unscented Kalman Filter, Extended H∞ Filter, Attitude Estimation, Gyro Calibra-
tion, Nonlinear System
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1 INTRODUCTION

Attitude estimation is a process of determining the orientation of a satellite with respect to
an inertial reference system by processing data from attitude sensors. Given a reference vector,
the attitude sensor measures the orientation of this vector with respect to the satellite system.
Then, it is possible to estimate the orientation of the satellite processing computationally these
vectors using attitude estimation methods. The bias can be defined as a output component not
related to input to which the sensor is subjected and its components have features deterministic
and stochastic. Therefore, you need to know and to characterize it, consequently set the method
for estimating.1

The attitude stabilization here is done in three axes namely geo-targeted, and can be de-
scribed in relation to the orbital system. In this frame, the movement around the direction of the
orbital speed is named roll (φ), the movement around the normal direction to the orbit is called
pitch (θ), and finally the movement around the Zenith/Nadir direction is called yaw (ψ). See
Figure 1.

Figure 1: The orbital local system (xo, yo, zo) and the attitude system (x, y, z)

In this work, the attitude model is described by quaternions and the contributions of this re-
search is in the fact that, in the four estimation methods used, Second-Order ExtendedH∞ Filter
(SOEH∞F), Extended H∞ Filter (EH∞F), Extended Kalman Filter (EKF) and the Unscented
Kalman Filter (UKF) consider the process model as noisy, as noted in reality. Furthermore, the
methods are considered online, which can be used on board the satellite, for each measurements
processed, the methods propagates and updates the states estimated in real time.

In the simulation for orbit and attitude, performed by the propagator PROPAT,2 again the
sattelite considered has similar characteristics to CBERS-2 which have data supplied by triad
of gyroscopes, two Infrared Earth Sensors (IRES) and two Digital Sun Sensors (DSS).

As previously mentioned, The state estimation process was performed by the SOEH∞F
compared to EH∞F and EKF. Undoubtedly, the Kalman filter is most famous for its wide appli-
cation in various areas of engineering. In Aerospace Engineering sector we can mention impor-
tant contributions, the Reference3 presents a study on the satellite attitude estimation using the
Extended Kalman Filter, the Reference4 presents comparisons between two Kalman Filters for
nonlinear systems, the Reference5 analyzes the results of the Extended Kalman Filter in instant
mapping and localization process and in Reference,6 research used as a model, because it uses
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the Extended Kalman filter for attitude and gyros bias estimation but using real data and with a
sampling time less than that used in this research.

The Kalman filtering assumes that the message generating process has a known dynamics
and that the exogenous inputs have known statistical properties. Unfortunately, these assump-
tions limit the utility of minimum variance estimators in situations where the message model
and the noise descriptions are unknown.7

Given this feature of Kalman filtering, is on this background that the H∞ filtering used
herein contributes to the better accuracy in the estimation process of spacecraft attitude.

The H∞ filtering minimizes the worst-case estimation error and thus it is more robust than
conventional Kalman filtering. The H∞ Filter is based on the game theory approach that was
originally developed by Reference8 and is further discussed in Reference9 and Reference.10 The
extended form for theH∞ filtering with a second-order linearization is discussed in Reference.11

In this game theory approach, the designer prepares for the worst strategy that the nature can
provide. Therefore, the state estimator and the signal disturbance (initial condition error, process
noise and measurements noise) have conflicting objectives, which are to mininize and maximize
the estimation error respectively. The estimation criterion in the H∞ filter design is to minimize
the worst possible effects of the disturbance signals on the signal estimation error without a
priori knowledge of them.

2 Attitude Representation by Quaternions

The quaternion is a four dimensional vector that defines a unit vector in space and the angle
to rotate about that unit vector to transform from one frame to another.12, 13 The quaternion can
be written as follows:

qqq =
[
q1 q2 q3 q4

]T
=
[
qqq∗ q4

]T
(1)

where, qqq∗ = eee sin
ζ

2
e q4 = cos

ζ

2

Here, eee =
[
e1 e2 e3

]T
is the unit vector and ζ is the angle of rotation about unit vector

eee. The quaternion satisfies the following constraint:

qqqTqqq = q2
1 + q2

2 + q2
3 + q2

4 = 1 (2)

The state vector formed by the quaternion and the gyro bias vector is given by:

xxx =
[
q1 q2 q3 q4 εx εy εz

]T
(3)

If the angular velocity vector ωωω =
[
ωx ωy ωz

]T
of body frame is known with respect

to another reference frame, the differential equation of the quaternion system becomes3, 12

q̇qq =
1

2
ΩΩΩωqqq

ε̇εε = 0
(4)

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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where, ΩΩΩω is an anti-symmetric matrix 4× 4 given by:

ΩΩΩω =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (5)

Assuming that the working data is sampled at a fixed rate and the angular velocity vector
in the satellite system is constant over the sampling interval, then a solution of the problem is:13

qqq (tk+1) = ΦΦΦqqq (∆t, |ωωω|)qqq (tk) (6)

where, ∆t the sampling interval; qqq (tk) is the attitude quaternion in time tk; qqq (tk+1) is the
quaternion of propagated attitude to time tk+1; and ΦΦΦqqq is the transition matrix carrying the
system time tk+1 for tk , given by:

ΦΦΦqqq (∆t, |ωωω|) = cos

(
|ωωω|∆t

2

)
III +

1

|ωωω|
sin

(
|ωωω|∆t

2

)
ΩΩΩω (7)

3 Mathematical Models of Attitude Sensors
In order to ascertain the attitude of an artificial satellite it is necessary to use some attitude

sensors. Thus, in this section is described the mathematical model of the attitude sensors used
in this research for the determination of attitude: gyros, digital sun sensor and infrared Earth
sensor.

3.1 Mathematical Model of Gyroscope
In this work the gyros (Rate Integration Gyros-RIG’s) are used to measure the angular

velocity of roll, pitch and yaw axes of the satellite. In addition, the drift errors (bias), due to
minor imperfections of its mechanism, are included in the state vector to be estimated.

The bias can be defined as an output component not related to input to which the sensor is
subjected and its components have features deterministic and stochastic. Therefore, you need
to characterize it and consequently set the method for estimating.

The RIG’s model is given by:13

∆ΘΘΘi =

∫ ∆t

0

(ωωωi + εεεi) dt, (i = x, y, z) (8)

where, ∆ΘΘΘi are the angular displacements measured in the axes of the satellite in a time in-
terval ∆t, ωωωi are the components of the angular velocity of the satellite system and εεεi are the
components of the gyro bias.

The measurement of the components of the angular velocity of the satellite is represented
as:

ω̂ωωi =
dΘΘΘi

dt
− ε̂εεi − ηηηi = gggi − ε̂εεi + υυυi (9)

where, gggi(t) is the gyro output vector and υυυi(t) is the white Gaussian noise process, which
covers all remaining non-modeled effects besides the random noises.
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3.2 Mathematical Model of Infrared Earth Sensor

The horizon Sensor is an optical instrument used to detect the light emitted by the edge
of the Earth’s atmosphere. Infrared sensors are used to detect the heat from the Earth’s atmo-
sphere, which is very hot compared to the cold of space, thus they are called Infrared Earth
Sensors(IRES). The IRES determine the angle between the direction of an axis of symmetry of
the satellite and the direction from the center of the Earth.

When using the IRES, it may help to estimate drift errors present in gyro.3, 14 In this work,
two sensors are used, where one measures the roll angle and the other measures the pitch angle.

The equations of measurements for Infrared Earth Sensors (IRES) are given by.15

φH = φ+ υφH

θH = θ + υθH

(10)

where υφH and υθH are the white noise that represent small remaining effects of misalignment
during installation and/or by assembly of sensor. These errors are assumed Gaussian ones.

3.3 Mathematical Model of Digital Sun Sensor

The Digital Sun Sensor is an optical device that detects the Sun and sets the position of one
of the main axes of symmetry of the spacecraft relative to the direction in which the Sun was
detected. In this work is not able to measure the yaw angle, i.e., these sensors do not provide
direct measures, it measures the coupled pitch angle (αθ) and yaw angle (αψ). The equations of
measurements for the Digital Sun Sensors (DSS) are obtained as follows.15–17

αψ = arctan

(
−Sy

Sx cos 60◦ + Sz cos 150◦

)
+ υαψ (11)

when |Sx cos 60◦ + Sz cos 150◦| ≥ cos 60◦, and

αθ = 24◦ + arctan

(
Sx
Sz

)
+ υαθ (12)

when
∣∣∣24◦ + arctan

(
Sx
Sz

)∣∣∣ < 60◦, where υαψ and υαθ are the white noise and represent small
effects remnants of misalignment during installation and/or by sensor assembly. Just as the
Infrared Earth Sensor, these errors are assumed Gaussian ones.

The conditions must be such that the solar vector is in the field of sight of sensor and Sx,
Sy, Sz are the components of the unit vector associated with the solar vector satellite system at
date by:

Sx = S0x + ψS0y − θS0z

Sy = S0y − ψS0x + φS0z

Sz = S0z − φS0y − θS0z

(13)

where S0x, S0y e S0z are the components of the solar vector in orbital coordinate system15 and
φ, θ e ψ are the Euler angles, which represent the estimated attitude.
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4 Problem Formulation for the Second-Order Extended H∞ Filter

Consider a nonlinear discrete time system

xxxk+1 = f(xxxk,uuuk) +wwwk

yyyk = h(xxxk) + υυυk
(14)

where k is the discrete time index, xxxk+1 and yyyk are the state and measurements vectors with
dimensions of n and m respectively, wwwk and υυυk are process and measurements noises, these
noise terms may be random with possibly unknown statistics and nonzero mean, or they may
be deterministic. The term uuuk is the control input and f(.) and h(.) are vectors of nonlinear
functions that are differentiable with respect to xxxk.

Hence, the second-order Taylor series expansion of f(xxxk,uuuk) and h(xxxk) around the nominal
point x̂xxk (the estimated state) are

f(xxxk,uuuk) = f(x̂xxk,uuuk) +
∂f

∂xxxk

∣∣∣∣
x̂xxk

(xxxk − x̂xxk)

+
1

2

n∑
i=1

ϕfi (xxxk − x̂xxk)T
∂2fi
∂xxx2

k

∣∣∣∣
x̂xxk

(xxxk − x̂xxk)
(15)

h(xxxk) = h(x̂xxk) +
∂h

∂xxxk

∣∣∣∣
x̂xxk

(xxxk − x̂xxk)

+
1

2

m∑
i=1

ϕhi (xxxk − x̂xxk)T
∂2hi
∂xxx2

k

∣∣∣∣
x̂xxk

(xxxk − x̂xxk)
(16)

where fi and hi are the ith element of f(xxxk,uuuk) and h(xxxk). The terms ϕfi and ϕhi are vectors

given by ϕfi =
[

0 ... 0 1 0 ... 0
]T
n×1

and ϕhi =
[

0 ... 0 1 0 ... 0
]T
m×1

where

the one is in the ith element. The quadratic term in Eq. (15) and (16) can be written as

(xxxk − x̂xxk)T
∂2fi
∂xxx2

k

∣∣∣∣
x̂xxk

(xxxk − x̂xxk) = tr

[
∂2fi
∂xxx2

k

∣∣∣∣
x̂xxk

(xxxk − x̂xxk) (xxxk − x̂xxk)T
]

≈ tr

[
∂2fi
∂xxx2

k

∣∣∣∣
x̂xxk

P̄PP k

] (17)

(xxxk − x̂xxk)T
∂2hi
∂xxx2

k

∣∣∣∣
x̂xxk

(xxxk − x̂xxk) = tr

[
∂2hi
∂xxx2

k

∣∣∣∣
x̂xxk

(xxxk − x̂xxk) (xxxk − x̂xxk)T
]

≈ tr

[
∂2hi
∂xxx2

k

∣∣∣∣
x̂xxk

P̄PP k

] (18)

where tr [.] is the trace operation and it was assumed that the matrix P̄PP k can be estimated by the
sample covariance matrix of the estimation error.
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The goal is to estimate a linear combination of the state. That is, we want to estimate zzzk,
which is given by

zzzk = LLLkxxxk (19)

where LLLk is a user-defined matrix with full rank. If we want to directly estimate xxxk as in the
Kalman Filter, then we set LLLk = III . The estimate of zzzk is denoted as ẑzzk and the estimate of the
initial state xxx0 is x̂xx0.

The design criterion for the SOEH∞F is to find ẑzzk that minimizes (zzzk − ẑzzk) for any wwwk,
υυυk and xxx0. Considering the worst-case scenario, assuming that the nature is our adversary one
needs to findwwwk, υυυk and xxx0 to maximize (zzzk − ẑzzk).11, 18

However, the nature could maximize (zzzk − ẑzzk) by simply using infinite magnitudes forwwwk,
υυυk and xxx0, but this would not make the game fair, as this is not a clever choice. One of the ideas
is to put the termswwwk, υυυk and xxx0 in the denominator and a commonly used cost function is

J1 =

N−1∑
k=0

‖zzzk − ẑzzk‖2
SSSk

‖xxx0 − x̂xx0‖2
PPP−1

0
+

N−1∑
k=0

(
‖wwwk‖2

QQQ−1
k

+ ‖υυυk‖2
RRR−1
k

) (20)

The notation ‖xxxk‖2
SSSk

is defined as the square of the xxxk weighted by SSSk, or the L2 norm of
xxxk, i.e., ‖xxxk‖2

SSSk
= xxxTkSSSkxxxk. The weighting matrices PPP 0,QQQk,RRRk and SSSk are symmetric positive

definite matrices chosen by the user based on the specific problem.

To solve of the minimax problem, first a stationary point of J1 with respect to xxx0 and wwwk
needs to be found, and then a stationary point of J with respect to x̂xxk and yyyk needs to be found
too.18

4.1 The Second-Order Extended H∞ Filter Solution

Consider the minimax problem, the Taylor series expansion described in Eq. (15) and (16)
is used to approximate the nonlinear function in Eq. (14). The stationary point of J1 with respect
to xxx0 andwwwk is given by

xxx0 = x̂xx0 +PPP 0λλλ0 (21)

wwwk = QQQkλλλk+1 (22)

λλλN = 0 (23)

λλλk = GGG−1
k

[
FFF T
kλλλk+1 + γS̄SSk (µµµk − x̂xxk) +HHHT

kRRR
−1
k (ỹyyk −HHHk (µµµk − x̂xxk))

]
(24)

PPP k+1 = FFF kPPP kGGG
−1
k FFF

T
k +QQQk (25)

µµµ0 = x̂xx0 (26)

µµµk+1 = f (x̂xxk,µµµk) +FFF k (µµµk − x̂xxk) +
1

2

n∑
i=1

ϕfi tr

[
∂2fi
∂xxx2

k

∣∣∣∣
x̂xxk

P̄PP k

]
+FFF kPPP kGGG

−1
k

[
γS̄SSk (µµµk − x̂xxk) +HHHT

kRRR
−1
k (ỹyyk −HHHk (µµµk − x̂xxk))

] (27)
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where

FFF k =
∂f

∂xxxk

∣∣∣∣
x̂xxk

(28)

HHHk =
∂h

∂xxxk

∣∣∣∣
x̂xxk

(29)

ỹyyk = yyyk − h (x̂xxk)−
1

2

m∑
i=1

ϕhi tr

[
∂2hi
∂xxx2

k

∣∣∣∣
x̂xxk

P̄PP k

]
(30)

GGGk = III − γS̄SSkPPP k +HHHT
kRRR
−1
k HHHkPPP k (31)

The Eq. (30) is called residual and its has fundamental importance for the stability and
convergence of the filter.

With the results of xxx0 and wwwk present in Eq. (21) and (22), the stationary point of J with
respect to x̂xxk and yyyk is given by

x̂xxk = µµµk (32)

yyyk = h (x̂xxk) +
1

2

m∑
i=1

ϕhi tr

[
∂2hi
∂xxx2

k

∣∣∣∣
xxxk

P̄PP k

]
(33)

The proof and the mathematical development can be found in Reference11 and Reference.18

However, the SOEH∞F Solution, presented for the space state represented by Eq. (14), is
given by combination of the Eq. (27), (25), (32) and (33), thus:11, 18

S̄SSk = LLLTkSSSkLLLk (34)

KKKk = PPP k

[
III − γS̄SSkPPP k +HHHT

kRRR
−1
k HHHkPPP k

]−1
HHHT

kRRR
−1
k (35)

x̂xxk+1 = f(x̂xxk,µµµk) +
1

2

n∑
i=1

ϕfi tr

[
∂2fi
∂xxx2

k

∣∣∣∣
x̂xxk

P̄PP k

]
+FFF kKKKkỹyyk (36)

PPP k+1 = FFF kPPP k

[
III − γS̄SSkPPP k +HHHT

kRRR
−1
k HHHkPPP k

]−1
FFF T
k +QQQk (37)

λλλk+1 =
(
FFF kFFF

T
k + ξIII

)−1
FFF k

(
GGGkλλλk −HHHT

kRRR
−1
k ỹyyk

)
(38)

P̄PP k+1 = ηP̄PP k + (1− η)PPP kλλλkλλλ
T
kPPP

T
k (39)

where ξ is positive scalar to prevent the term FFF kFFF
T
k from being singular and 0 < η ≤ 1.

Furthermore, the value of γ must satisfy the Eq. (40) to ensure that the optimized value of x̂xxk
yields a local minimum of J , i.e.

PPP−1
k − γS̄SSk +HHHT

kRRR
−1
k HHHk > 0 (40)

That is, the expression, PPP−1
k − γS̄SSk +HHHT

kRRR
−1
k HHHk, must be positive definite.
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4.2 The Extended H∞ Filter Solution

The Solution is similar to presented in SOEH∞F Solution but without the second order
terms.19

However, the EH∞F Solution is given by:

S̄SSk = LLLTkSSSkLLLk (41)

KKKk = PPP k

[
III − γS̄SSkPPP k +HHHT

kRRR
−1
k HHHkPPP k

]−1
HHHT

kRRR
−1
k (42)

x̂xxk+1 = f(x̂xxk,µµµk) +FFF kKKKk (yyyk − h (x̂xxk)) (43)

PPP k+1 = FFF kPPP k

[
III − γS̄SSkPPP k +HHHT

kRRR
−1
k HHHkPPP k

]−1
FFF T
k +QQQk (44)

Again, the value of γ must satisfy the Eq. (44) to ensure that the optimized value of x̂xxk
yields a local minimum of J , as was shown in Eq. (40)

4.3 The Extended Kalman Filter Solution

The EKF Solution for the nonlinear function, present in Eq. (14), is given as follows.18

Time update equations:

x̂xx−k = f(x̂xx+
k−1,µµµk) (45)

P̃PP
−
k = F̃FF k−1P̃PP

+

k−1F̃FF
T

k−1 + Q̃QQk−1 (46)

Measurements update equations:

x̂xx+
k = x̂xx−k + K̃KKk

(
yyyk − h(x̂xx−k )

)
(47)

K̃KKk = P̃PP
−
k H̃HH

T

k

(
H̃HHkP̃PP

−
k H̃HH

T

k + R̃RRk

)−1

(48)

P̃PP
+

k =
(
III − K̃KKkH̃HHk

)
P̃PP
−
k (49)

where F̃FF k = ∂f
∂xxxk

∣∣∣
x̂xx+k

and H̃HHk = ∂h
∂xxxk

∣∣∣
x̂xx−k

.

5 The Unscented Kalman Filter

The method calculates the statistics of a random variable that passes through a nonlinear
transformation is called Unscented Transformation . This transformation is based on the prin-
ciple that it is easier to approximate a probability distribution than approaching a nonlinear
arbitrary function18, 20
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5.1 The Unscented Kalman Filter Solution

Consider the nonlinear function, present in Eq. (14) and n the number of state. Propagate
it should be a time step (k − 1) to k, you must first choose the sigma-points xxx(i)

k−1, since the
current best guess for the mean and covariance of xxxk are xxx+

k−1 and PPP+
k−1:

xxx(0) = xxx+
k−1

xxx
(i)
k−1 = xxx+

k−1 + x̃xx(i) i = 1, . . . , 2n

x̃xx(i) =
(√

(n+ κ)PPP+
k−1

)T
i

i = 1, . . . , n

x̃xx(n+i) = −
(√

(n+ κ)PPP+
k−1

)T
i

i = 1, . . . , n

(50)

Use the known equation of the nonlinear system f(.) to convert the sigma-points xxx(i)
k in

vectors:

x̂xx
(i)
k = f(x̂xx

(i)
k−1, tk) i = 0, . . . , 2n (51)

Combine the vector x̂xx(i)
k for the a-priori state estimated time k.

x̂xx−k =
2n∑
i=0

WWW (i)x̂xx
(i)
k (52)

Estimate the a-priori error covariance. However, should addQQQk−1 in the end of the process
equation to take the noise in consideration:

PPP−k =
2n∑
i=0

WWW (i)
(
x̂xx

(i)
k − x̂xx

−
k

)(
x̂xx

(i)
k − x̂xx

−
k

)T
+QQQk−1 (53)

Choose the sigma-points x̂xx(i)
k , with appropriate changes to the mean and covariance of xxxk

are x̂xx−k and P̂PP
−
k :

xxx(0) = xxx−k

xxx
(i)
k = xxx−k + x̃xx(i) i = 1, . . . , 2n

x̃xx(i) =
(√

(n+ κ)PPP−k

)T
i

i = 1, . . . , n

x̃xx(n+i) = −
(√

(n+ κ)PPP−k

)T
i

i = 1, . . . , n

(54)

Use known nonlinear measurement equation h(.) to convert the sigma-points in vectors ŷyy(i)
k

(predicted measurement):

ŷyy
(i)
k = h(x̂xx

(i)
k , tk) i = 0, . . . , 2n (55)
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Combine the vector ŷyy(i)
k for the predicted measurement in time k

ŷyyk =
2n∑
i=0

WWW (i)ŷyy
(i)
k (56)

Estimate the covariance of the predicted measurements. However, should add RRRk to the
end of the equation to the take the measurement noise into account:

PPP y =
2n∑
i=0

WWW (i)
(
ŷyy

(i)
k − ŷyyk

)(
ŷyy

(i)
k − ŷyyk

)T
+RRRk (57)

Estimate the cross covariance between x̂xx−k and ŷyyk:

PPP xy =
2n∑
i=0

WWW (i)
(
x̂xx

(i)
k − x̂xx

−
k

)(
ŷyy

(i)
k − ŷyyk

)T
(58)

The updated measures of estimated state can be obtained using the Kalman filter Normal
as follows:

KKKk = PPP xyPPP
−1
y

x̂xx+
k = x̂xx−k +KKKk (yyyk − ŷyyk)

PPP+
k = PPP−k −KKKkPPP yKKK

T
k

(59)

6 Computer Simulation by PROPAT and Results

The orbit and attitude simulation were made by propagator PROPAT,2 coded in MatLab
software with a sampling rate of 0.5s for 10min of observation.

The initial conditions used were xxx0 =
[

0.0 0.0 0.0 5.76 4.83 2.68
]T

; the covari-
ance matrix PPP 0 = diag (0.25; 0.25; 4.0; 1.0; 1.0; 1.0); the process error matrix which weigh the
process noiseQQQ0 = diag (6.08; 5.47; 6.08; 4× 10−3; 4× 10−3; 4× 10−3)× 10−3; the measure-
ments error matrix which weigh the measurements noiseRRR0 = diag (0.36; 0.36; 0.0036; 0.0036);
the auxiliar covariance matrix P̄PP 0 = diag (0.25; 0.25; 4.0; 1.0; 1.0; 1.0) and the initial Lagrange

multiplier λλλ0 =
[

0.1 0.1 0.1 0.1 0.1 0.1
]T

. For the vector xxx0, the first three elements

are in deg and the others elements are in deg/h, for the matrices PPP 0, QQQ0 and P̄PP 0 the first three
elements are in deg2 and the others elements are in deg2/h2, and finally, for the matrix RRR0 all
the elements are in deg2.

For the SOEH∞F, the parameters used were γ = 1/3, η = 0.01, ξ = 10.3 and the matrices
LLLk and SSSk are both set to be identity matrices.

Figures 2 and 3, present the attitude angles and gyros bias estimation using the EKF, EH∞F,
SOEH∞F and the UKF.
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Suzana Moreira Ávila (Editor), ABMEC, Brası́lia, DF, Brazil, November 6-9, 2016



W. R. Silva, R. V. Garcia, H. K. Kuga, M. C. Zanardi

Figure 2: Estimated roll, pitch and yaw angles respectively

Figure 3: Estimated gyros bias around the x, y and z axes respectively

Figure 2 can be see that for the roll and pitch angles of both filters are consistent, but for
the yaw angle is observed that the UKF has a more oscillating result which leads us to consider
the SOEH∞F with better result for the respective estimated angle. In Fig. 3, it is observed that
the UKF has a higher accuracy for the gyros bias around the x and z axes, but for the gyros bias
around the y axes the UKF delay to converge, thus the SOEH∞F presents greater accuracy for
the gyros bias around the y.

It is importante to emphasize that the Kalman Filter can be made more robust to noise and
dynamics unmodeled by artificially increasing the process noise covariance matrix Q̃QQk which
results in a larger gain K̃KKk and a larger covariance P̃PP

−
k+1. In literature, there are some works

that claim that,11, 18 increasing the process noise covariance matrix Q̃QQk of the Extended Kalman
Filter is conceptually the same as increasing the gainKKKk and covariance PPP k+1 in the Extended
H∞ Filter using the performance bound γ amending the element −γS̄SSkPPP k inKKKk and PPP k+1.

Before analyzing the filter performance, it is important to analyze their convergence done
through configuration of residual represented by the Eq. (30). See Figure 4
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Figure 4: Residuals of the two DSS on board the CBERS-2 satellite

Figure 4 presented the residuals of the two Digital Solar Sensor (DSS), by the estimation
methods EKF, EH∞F, SOEH∞F and the UKF.

For better visualization of the residuals, in the Fig. 5 below shows the residual frequency
for each of the filters in the analysis, presenting characteristics make a Gaussian.

Figure 5: Frequency Residuals of the two DSS on board the CBERS-2 satellite

It is said that a Filter is converging when your residual is close to zero average and it
happens with the results presented in Table 1 that shows the average value and the standard
deviation of the DSS residuals for each of the filters presented in Figure (5)

Table 1: Mean and standard deviation statistics of the DSS Residuals

EKF EH∞F SOEH∞F UKF

DSS1 Res.(deg) −0.002± 0.160 −0.003± 0.163 −0.002± 0.165 0.042± 1.000

DSS2 Res.(deg) −2.6 ∗ 10−4 ± 0.165 6.4 ∗ 10−5 ± 0.161 −5.4 ∗ 10−5 ± 0.157 −0.006± 1.132

The standard deviation of the DSS Residuals is calculated by Eq (60).
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σ =

√√√√ 1

K

K∑
k=1

(ỹyyk − ȳyy)2 (60)

where ȳyy = 1
K

∑K
k=1 ỹyyk and K the total number of estimation.

The average results for the DSS1 Residual are similar for the EKF, EH∞F, SOEH∞F and
UKF, but the average results for the the DSS2 Residual presented better result for the H∞
Filtering, although visually the UKF shows narrowing around the mean zero, but the average
value is displaced.

The following, in Figure 6 presented the residuals of the two Infrared Earth Sensor (IRES),
for the estimation methods SOEH∞F, the EH∞F and the EKF.

Figure 6: Residuals of the two DSS on board the CBERS-2 satellite

Figure 7 presented the residual frequency of the two Infrared Earth Sensor (IRES), for the
estimation methods studied.

Figure 7: Frequency Residuals of the two DSS on board the CBERS-2 satellite

Here, one can clearly see that, in UKF the residuals converge faster than in SOEH∞F,
EH∞F and EKF. Results observed by narrowing of Gaussian, see Figure 7. This fact will result
in greater accuracy in the state estimation.
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The Table 2 shows the average value and the standard deviation of the IRES residuals for
each of the filters presented in Fig. (7)

Table 2: Mean and standard deviation statistics of the IRES Residuals

EKF EH∞F SOEH∞F UKF

IRES1 Res.(deg) −1.3 ∗ 10−4 ± 0.043 −3.4 ∗ 10−5 ± 0.023 −2.4 ∗ 10−5 ± 0.012 0.002± 0.110

IRES2 Res.(deg) 1.5 ∗ 10−4 ± 0.041 4.3 ∗ 10−5 ± 0.022 7.5 ∗ 10−5 ± 0.012 0.006± 0.165

By the Table 2 all the filters is converging, and the mean the SOEH∞F present better result
for the IRES1 Residual and for the IRES2 Residual, when compared with the EKF, EH∞F and
UKF. Again, although visually the UKF shows narrowing around the mean zero, but the average
value is displaced.

To analyze the accuracy of the filters studied, it is presented, in Fig. 8, the error attitude
estimation for the methods studied.

Figure 8: Error attitude estimation

Table 3 shows the average value and the standard deviation of the error attitude estimation
presented in Figure (8)

Table 3: Mean and standard deviation statistics of the error attitude estimation

EKF EH∞F SOEH∞F UKF

φ Error(deg) 8.4 ∗ 10−4 ± 0.024 9.4 ∗ 10−4 ± 0.041 9.5 ∗ 10−4 ± 0.049 2.6 ∗ 10−4 ± 0.060

θ Error(deg) −8.8 ∗ 10−4 ± 0.025 −9.3 ∗ 10−4 ± 0.040 −9.5 ∗ 10−4 ± 0.047 −0.004± 0.057

ψ Error(deg) 0.006± 0.032 0.005± 0.056 0.005± 0.071 −0.005± 0.281

With a small change, the standard deviation of the error state estimation is calculated by
Eq. (61)
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σ =

√√√√ 1

K

K∑
k=1

(x̃xxk − x̄xx)2 (61)

where x̃xxk = x̂xxk − xxxk, x̄xx = 1
K

∑K
k=1 x̃xxk and K the total number of estimation.

Analyzing the Table 3 it can be seen that, the average results for the error attitude estimation
are basically the same, with a little better in the SOEH∞F for the θ Error when compared with
the EKF, EH∞F and UKF.

The following, in Figure 9 presented the error bias estimation for the methods studied.

Figure 9: Error gyros bias estimation

Table 4 shows the average value and the standard deviation of the error bias estimation
presented in Fig. (9)

Table 4: Mean and standard deviation statistics of the IRES Residuals

EKF EH∞F SOEH∞F UKF

εx Error(deg/h) −0.009± 0.006 −0.002± 0.002 −4.4 ∗ 10−4 ± 8.0 ∗ 10−4 9.8 ∗ 10−4 ± 1.0 ∗ 10−5

εy Error(deg/h) 0.006± 0.006 0.003± 0.002 0.001± 8.4 ∗ 10−4 0.422± 0.191

εz Error(deg/h) 2.8 ∗ 10−4 ± 0.008 1.2 ∗ 10−4 ± 0.003 2.8 ∗ 10−4 ± 0.001 1.3 ∗ 10−4 ± 1.1 ∗ 10−5

Finally, in the Table 4 is clear that the UKF presents better results for the average of the εx
Error and the εy Error, but for the εy Error the SOEH∞F have better accuracy. Then, the H∞
filtering and UKF shows superior results in accuracy compared with the EKF, i.e., the attitude
estimation and the gyros calibration is much better when accomplished byH∞ filtering or UKF.

However, this high accuracy comes with a larger processing time, as can be checked in
Table 5

The average CPU time was increasing in proportion to the EKF being replaced by the
EH∞F, SOEH∞F and UKF. On the avarage, the EH∞F, the SOEH∞F and the UKF are 0.44s,
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Table 5: Comparing processing time cost

EKF EH∞F SOEH∞F UKF

Average CPU time 1.4201s 1.8654s 3.4434s 3.2713s

2.02s and 1.85s slower than EKF, respectively. For the SOEH∞F the result appears due to the
large equationing and the second-order derivation, necessary in the filter to be processed and for
the UKF the results appears due to the cloud of the sigma-points necessary for the development
filter.

7 Conclusions

The usage of real data from on board attitude sensors, poses difficulties like mismodelling,
mismatch of sizes, misalignments, unforeseen systematic errors and post-launch calibration
errors. However, it is observed that the attitude estimated by the SOEH∞F and UKF are in close
agreement with the results in previous works16, 17 which used the EKF for attitude estimation.

Regarding the robustness of the estimation method SOEH∞F, it was noted that the results
are similar with the reference EKF but the gyros bias covariance by the SOEH∞F provides
results supposedly more accurate for gyros calibration.

According to the theory, the weighting matrices QQQk, RRRk and SSSk in SOEH∞F are symmet-
ric positive definite matrices which can be designed by the user without requiring them to be
diagonal, but the noise covariance matrices Q̃QQk and R̃RRk in EKF are normally set to be diagonal.
However, different weighting matrices result in different performance.18

It is noted that, the SOEH∞F can be more robust to the unmodeled noise than the EKF
when the weighting matricesQQQk andRRRk are the same to the covariance matrices Q̃QQk and R̃RRk of
the EKF. The SOEH∞F is a worst-case filter in the sense that it assumes that the process and
measurements noises, wwwk and υυυk respectively, and the initial condition xxx0 will be chosen by
nature to maximize the cost function. Comparing these filters, we can infer that the SOEH∞F
is simply a robust version of the EKF.

In general terms, for nonlinear system, the Kalman filtering can be used for state estimation,
but the UKF may give better results at the price of additional computational effort because
the UKF transform a set of points via known nonlinear equations and combines the results to
estimate the mean and covariance of the state.

Finally, it can be concluded that the algorithm of the SOEH∞F and UKF converges, provid-
ing a kinematic attitude solution besides estimating biases (gyro drifts) with superior accuracy
as compared with the EKF.
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Suzana Moreira Ávila (Editor), ABMEC, Brası́lia, DF, Brazil, November 6-9, 2016


