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Abstract. We investigate the numerical performance of a structural optimization method based
on the level-set approach and using nonlinear programming. Besides the method of the moving
asymptotes (MMA) and a globally convergent modification of it with a spectral correction,
we have also considered sequential quadratic programming and interior-point methods as the
nonlinear programming driving tools. We remark that the original formulation of the topology
optimization problem may be addressed, without any need to penalize the constraints. The
method was applied to the solution of some classical problems from the literature and the results
obtained are encouraging.
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1 INTRODUCTION

The level-set approach has been successfully used to address structural topology optimiza-
tion. Recent reviews (Deaton and Grandhi (2014), Sigmund and Maute (2013)) include such
an approach as an alternative to the traditional material distribution density-based methods.
Level-set methods can be categorized with respect to the level-set-function parameterization,
the geometry mapping, the physical/mechanical model, the information and the procedure to
update the design and the applied regularization. Important issues that affect the convergence
behavior of the optimization process in the level-set scenery include the control over the slope
and smoothness of the level-set function as well as the hole nucleation. These ideas are fully
discussed in the review article of Dijk et al. (2013).

Matlab codes are current available for level set-based topology optimization methods, that
provide enlightening and concrete implementation details and were designed with educational
purposes. The code of Challis (2010) minimizes the compliance of statically loaded structures.
An evolution equation with an additional forcing term is used to update the level-set function,
so that the nucleation of new holes within the structure is allowed, but the standard Hamilton-
Jacobi evolution equation can be employed as well by setting the parameter of the forcing term
to zero. The code of Otomori et al. (2015) also addresses the compliance minimization problem,
but the level-set function is updated using a reaction-diffusion equation based on the topological
derivative of the objective functional (see also Yamada et al. (2010)). The regularizing diffusive
term ensures the smoothness of the level-set function and a relaxation in the volume constraint
stabilizes the convergence. The finite element method (FEM) is used to solve the equilibrium
equations and the reaction-diffusion equation when updating the level-set function.

Pursuing a direct steepest-descent update of the design variables in a level-set method –
the level-set nodal values – Dijk et al. (2012) use an exact Heaviside formulation to relate
the level-set function to element densities. As a result, they tackle the numerical consistency
of the sensitivity analysis and propose alternative parameterizations to avoid artifacts in the
final results. In their conclusions, they mention that preliminary tests combining the proposed
method with the method of the moving asymptotes (MMA) of Svanberg (1987) show promising
results.

Otomori et al. (2011) applied level-set based topology optimization to the design of com-
pliant mechanisms. The level-set function is updated using mathematical programming, more
specifically MMA, to facilitate the treatment of constraints. To assess its capability, the authors
have applied their method to compliant mechanism design problems that include displacement
constraints and stress constraints. Is is worth mentioning that level set-based topology optimi-
sation methods are immune to the problem of grayscales since the boundaries of the optimal
configuration are implicitly represented using the level set function. Therefore, within the level-
set approach it is no longer necessary to circunvent the obtaining of structures with grayscale
areas.

In this paper we also employ mathematical programming techniques for updating the level-
set-function. We have prepared a numerical investigation of the performance of a structural
optimization method based on the level-set approach in the solution of benchmarking compli-
ance problems. The nonlinear programming driving tools are MMA in its original version; a
globally convergent modification of MMA with a spectral correction (Gomes-Ruggiero et al.
(2010)); the general purpose constrained minimization solver of Matlab (routine fmincon)
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with either the sequential quadratic programming algorithm (cf. chapter 18 of Nocedal and
Wright (2006)) or the interior-point algorithm (Byrd et al., 2000).

This work is organized as follows. In Section 2 we define the level-set function and the
general structural topology optimization compliance problem, with all the necessary notation.
The algorithmic framework adopted in our investigation is also established. Section 3 starts
with the methodology employed to prepare our code, followed by a brief explanation about the
nonlinear programming (NLP) methods used in the updating of the level-set function, together
with the details and choices that define the set of test problems. It also contains the numerical
results, depicted as images, with comparative data. In Section 4 we provide the final remarks
and comments on our work in progress.

2 THE ALGORITHMIC FRAMEWORK

2.1 The level-set function and the general compliance problem

Categorized as a boundary variation method, with roots in shape optimization techniques,
the level-set based methods rely on implicit functions that define the structural boundaries,
instead of an explicit parameterization of the design domain. Indeed, the structural boundary
is implicitly specified as a contour line of the field Φ, which is a function of x (see Fig. 1).
Therefore,

Φ(x) > 0, x ∈ Ω

Φ(x) = 0, x ∈ Γ

Φ(x) < 0, x 6∈ Ω,

where Ω is the domain of the structure and Γ is the boundary of such a domain.

  

Figure 1: Level set representations: (a) 2D topology with (b) corresponding level set function along with a
more complicated representation of benchmark structure (c) and (d), from Deaton and Grandhi (2014).

The level-set formulation is characterized by letting the level set model vary in time, i.e
{x(t) | Φ(x(t), t) = 0}, taking its time derivative and applying the chain rule to obtain the
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Hamilton-Jacobi-type equation

∂Φ(x, t)

∂t
+∇Φ(x, t)

dx

dt
= 0, Φ(x, 0) = Φ0(x),

that defines an initial value problem for the time-dependent function Φ.

Consequently, the optimal structural boundary turns into the solution of a partial differential
equation on Φ, in which dx

dt
≡ Υ(x,Φ) is the velocity vector of the level set and depends on the

desired objective to be optimized. An appropriate vector may be obtained as a descent direction
of the objective via sensitivity analysis.

From this perspective and following Dunning and Kim (2013), a general minimum com-
pliance optimization problem may be stated as

minimize
∫
D E ε(u)ε(u)H(Φ) dΩ ≡ C(u,Φ)

subject to
∫
DH(Φ) dΩ ≤ Vmax∫
D E ε(u)ε(v)H(Φ) dΩ =

∫
D b v H(Φ)dΩ +

∫
Γt
t v dΓ

u|Γu = 0, ∀v ∈ U

(1)

where D is the design domain, Ω is the material domain, such that Ω ⊂ D, Vmax is an upper
bound on the material volume, E is the material property tensor, ε(u) is the strain tensor for
the displacement field u, U is the space of kinematically permissible displacement fields, v is
any permissible displacement field, b are body forces, t are surface tractions and H(Φ) is the
Heaviside function

H(Φ) =

 1,Φ ≥ 0

0,Φ < 0.

Figure 2 illustrates the fixed design domain D, the material domain Ω and boundary condi-
tions for a mean compliance minimization problem.

  Figure 2: Design domain D, material domain Ω and boundary conditions, from Otomori et al. (2015).
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2.2 The optimization scheme

The equilibrium equality constraints of problem (1) are evaluated by the FEM, together
with the corresponding boundary conditions, and turned into Ku = f , where the stiffness
matrix is given by

K =
∑
e

ρe(Φ)Ke

with

ρe(Φ) = ε+ (1− ε)
∫
De
H(Φ)dΩ∫
De
dΩ

,

where ε is a lower bound to avoid a singular structural problem, H(Φ) is the Heaviside function
of the level-set function andDe is the domain of an element. As a result, we reach the following
discrete formulation (cf. Dijk et al. (2012)) for the compliance problem

min
Φ

c(Φ) ≡ uTKu

s.t.
1

Ne

∑
e

ρe(Φ) ≤ Vmax

Ku = f

−1 ≤ Φ ≤ 1,

(2)

where Ne is the number of elements of the discretization.

Schematically, the procedure adopted in this studyfor solving (2) is provided in Fig. 3. Our
flow chart was motivated by those of Otomori et al. (2011) and Yamada et al. (2011).

Initialize Φ(x)

Solve the equilibrium
system Ku = f using FEM

Evaluate objective
function and constraints

Convergence?

Sensitivity analysis

Stop

Update Φ(x) using NLP

no

yes

Figure 3: Flow chart of the optimization scheme.
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3 NUMERICAL EXPERIMENTS

3.1 Methodology
We have prepared a Matlab implementation to address the solution of the problem (2). We

have used an iMac, with a 2.4 GHz Intel Core 2 Duo processor and MatlabR2012a 64-bits. Our
code rests upon elements from both Dijk et al. (2012) and Otomori et al. (2015). From the
former, we have inherited the computation of the densities ρ(Φ), their derivatives, the perimeter
of the structure and its derivative. From the latter, we have adopted the FEM computation
(Andreassen et al. (2011)), together with the stopping criteria (budget on number of iterations
and lack of progress). As suggested in Dijk et al. (2012), we have controlled the occurrence of
gray areas by adding a perimeter penalty to the objective function, with penalty factor γ.

3.2 The NLP methods
We have chosen four nonlinear programming methods to update the level-set function:

(i) the original version of MMA (Svanberg (1987), denoted by MMAorig; (ii) the modified
version of MMA of Gomes-Ruggiero et. al (2010), that is based on the spectral parameter to
update a key parameter of the model, so that the second-order information present in the spectral
parameter is included in the model functions that define the rational approximations, denoted
by MMAspec; (iii) the sequential quadratic programming algorithm, cf. Chapter 18 of Nocedal
and Wright (2006), coded as the internal option sqp of the Matlab routine fmincon, denoted
by fmincon/sqp; (iv) the interior-point algorithm (Byrd et al., 2000), coded as the option
interior-point of fmincon, denoted by fmincon/ip.

For updating the level-set function Φ(x), instead of actually solving the current NLP prob-
lem, we let the solver to perform at most a pre-established and fixed number of iterations. As
shown in the numerical results, this policy has generated good results.

3.3 Test problems
Figure 4 shows the fixed design domains and the boundary conditions for the test problems

solved in this study. The first one models a cantilever beam whereas the second models a half
wheel. Due to the symmetrical features of the second model, only its right half portion is
computed, as suggested by Otomori et al. (2015), and this is the portion of the structure that is
depicted in the results.

  

  

Figure 4: Design domains and boundary conditions for Problem 1 (left) and Problem 2 (right), from Otomori
et al. (2015).
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3.4 Results

The Young’s modulus of the material was set as E = 1 and its Poisson’s ratio was set to
ν = 0.3. Figure 5 depicts the initial configurations for both problems. We remark that the
option fmincon/sqp is only able to address medium-scale problems, so the coarser meshes
were used solely with this option of solver. Indeed, the dimensions of the squared stifness
matrices were as follows: 1680 for the 40× 20 mesh, 6560 for the 80× 40 mesh, 1890 for the
30× 30 mesh and 7380 for the 60× 60 mesh.

40× 20 80× 40 30× 30 60× 60

Figure 5: Initial configurations for Problem 1 (40 × 20 and 80 × 40 meshes) and Problem 2 (30 × 30 and
60× 60 meshes)

When it comes to the stopping criteria, we proceed as Otomori et al. (2015) (see also Chalis
(2010)), by reaching at most 0.5% of error in the volume constraint, i.e.,∣∣∣∣∣ 1

Ne

∑
e

ρe(Φ)− Vmax

∣∣∣∣∣ ≤ 0.005,

together with relative measure of lack of progress within the objective function value in the last
5 iterations, with tolerance εc, as follows

|c(Φk)− c(Φk−p)| ≤ εc|c(Φk)|, ∀p ∈ {1, 2, . . . , 5}. (3)

We have also imposed a maximum number of 300 outer iterations for all the solvers. Neverthe-
less, in case fmincon produces an unexpected output, the code may exit without performing
the budget of iterations.

To assess the influence of the perimeter control, we have run
fmincon/ip for Problems 1 and 2, without such a control, as well as with
γ ∈ {10−3, 10−2, 10−1} for two options for the maximum fraction of volume, namely
Vmax ∈ {0.40, 0.50}.

The results can be seen at Figs. 6 and 7 for Problem 1 and at Figs. 8 and 9 for Problem 2.
Based on the obtained results, we have decided to further investigate, for each problem and each
solver, the effect of the choices γ = 10−1 and γ = 10−2.

Figure 10 depicts a study concerning the influence, in the final structure of Problem 1,
of the number of performed iterations of the solver MMAorig in the updating of the level-set
function Φ. Such a number will be addressed as the inner iterations of the corresponding NLP
solver, whereas the outer iterations denotes the number of times the convergence criteria are
checked.
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no control γ = 10−3 γ = 10−2 γ = 10−1

19 outer iter. 16 outer iter. 15 outer iter. 15 outer iter.
c = 71.3389 c = 71.9182 c = 72.1631 c = 76.6065

Figure 6: Solver fmincon/ip, Problem1, 80× 40 mesh, Vmax = 0.40, εc = 10−2, 5 inner iterations.

no control γ = 10−3 γ = 10−2 γ = 10−1

13 outer iter. 14 outer iter. 13 outer iter. 22 outer iter.
c = 59.7574 c = 59.5818 c = 60.1052 c = 62.7823

Figure 7: Solver fmincon/ip, Problem 1, 80× 40 mesh, Vmax = 0.50, εc = 10−2, 5 inner iterations.

no control γ = 10−3 γ = 10−2 γ = 10−1

51 outer iter. 68 outer iter. 56 outer iter. 45 outer iter.
c = 32.2827 c = 32.2972 c = 32.6925 c = 37.0585

Figure 8: Solver fmincon/ip, Problem 2, 60× 60 mesh, Vmax = 0.40, εc = 10−3, 5 inner iterations.

no control γ = 10−3 γ = 10−2 γ = 10−1

57 outer iter. 40 outer iter. 65 outer iter. 106 outer iter.
c = 27.7868 c = 28.0681 c = 28.3978 c = 31.4883

Figure 9: Solver fmincon/ip, Problem 2, 60× 60 mesh, Vmax = 0.50, εc = 10−3, 5 inner iterations.
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Vmax = 0.40 Vmax = 0.50

1 inner iteration

21 outer iter. 20 outer iter. 42 outer iter. 22 outer iter.
γ = 10−1 γ = 10−2 γ = 10−1 γ = 10−2

c = 76.5102 c = 74.5767 c = 63.6847 c = 60.4948

2 inner iterations

14 outer iter. 17 outer iter. 22 outer iter. 15 outer iter.
γ = 10−1 γ = 10−2 γ = 10−1 γ = 10−2

c = 76.1292 c = 73.3600 c = 63.6309 c = 60.1998

3 inner iterations

13 outer iter. 13 outer iter. 12 outer iter. 15 outer iter.
γ = 10−1 γ = 10−2 γ = 10−1 γ = 10−2

c = 76.0803 c = 72.1767 c = 62.3294 c = 60.0650

4 inner iterations

15 outer iter. 13 outer iter. 13 outer iter. 11 outer iter.
γ = 10−1 γ = 10−2 γ = 10−1 γ = 10−2

c = 75.2610 c = 71.9319 c = 62.2747 c = 60.0617

Figure 10: Solver MMAorig, Problem 1, 80× 40 mesh, εc = 10−2.

Based on these results, we decided to adopt 4 inner iterations for the subsequent tests
involving MMAorig. A similar study has been prepared for the other solvers, and 4 inner
iterations turned to be the best choice for MMAspec as well, whereas for fmincon/ip and
fmincon/sqp the most favourable results were obtained with 5 inner iterations.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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It is worth mentioning that such an idea came in hand with the evolutionary approaches
based on partial differential equations (eg. Challis (2010), Otomori et. al (2015)), in which
steepest descent steps for the augmented Lagrangian are taken to update the level-set function
(see also Dijk et al. (2012)). Consequently, our updating for Φ also has a local and inexact
flavor, and it is obtained upon the corresponding sufficient decrease condition of the adopted
solver.

Figure 11 summarizes the results of the solver fmincon/ip for Problem 1, for two
choices of the percentage of volume of material as well as two options for the penalty factor γ.

Vmax = 0.40 Vmax = 0.50

15 outer iter. 15 outer iter. 22 outer iter. 13 outer iter.
c = 76.6065 c = 72.1631 c = 62.7823 c = 60.0650

γ = 10−1 γ = 10−2 γ = 10−1 γ = 10−2

Figure 11: Solver fmincon/ip, Problem 1, 80× 40 mesh, εc = 10−2, 5 inner iterations.

In Fig. 12 we can observe the effect of tightening the tolerance of the relative stopping
criterion of Eq. (3), with an improvement in the compliance at the expense of additional effort.

13 outer iter. 25 outer iter.
c = 60.0650 c = 59.9934

εc = 10−2 εc = 10−3

Figure 12: Solver fmincon/ip, Problem 1, 80× 40 mesh, Vmax = 0.50, γ = 10−2, 5 inner iterations.

The results of the solver fmincon/sqp for Problem 1 are depicted in Fig. 13, being
qualitatively very much alike those of Fig. 11.

Concerning the solver MMAspec, the results of Problem 1 are shown in Fig. 14. After
tightening the tolerance εc, we have refined a poor result of an instance, as can be seen in
Fig. 15.

When it comes to Problem 2, although the outcomes of the solver fmincon/ip have
already been presented along the analysis of the influence of the perimeter control parameter
(Figs. 8 and 9), they are compiled in Fig 16 for the sake of better visualization and comparative
purposes. The results are similar for those obtained for the solver fmincon/sqp, shown in
Fig. 17, but only for the choice γ = 10−2.

For the solver MMAorig, as can be seen in Fig. 18, the instances with γ = 10−1 reached
the budget of maximum iterations, stopping with a poorly attendance of the volume constraint.
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Vmax = 0.40 Vmax = 0.50

11 outer iter. 11 outer iter. 10 outer iter. 10 outer iter.
c = 73.2646 c = 70.7905 c = 61.3839 c = 58.9312

γ = 10−1 γ = 10−2 γ = 10−1 γ = 10−2

Figure 13: Solver fmincon/sqp, Problem 1, 40× 20 mesh, εc = 10−2, 5 inner iterations.

Vmax = 0.40 Vmax = 0.50

36 outer iter. 26 outer iter. 24 outer iter. 15 outer iter.
c = 75.5082 c = 73.5408 c = 69.4493 c = 60.9174

γ = 10−1 γ = 10−2 γ = 10−1 γ = 10−2

Figure 14: Solver MMAspec, Problem 1, 80× 40 mesh, εc = 10−2, 4 inner iterations.

24 outer iter. 57 outer iter.
c = 69.4493 c = 62.4683

εc = 10−2 εc = 10−3

Figure 15: Solver MMAspec, Problem 1, 80× 40 mesh, Vmax = 0.50, γ = 10−1, 4 inner iterations.

Vmax = 0.40 Vmax = 0.50

45 outer iter. 56 outer iter. 106 outer iter. 65 outer iter.
c = 37.0585 c = 32.6925 c = 31.4883 c = 28.3978

γ = 10−1 γ = 10−2 γ = 10−1 γ = 10−2

Figure 16: Solver fmincon/ip, Problem 2, 60× 60 mesh, εc = 10−3, 5 inner iterations.
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Vmax = 0.40 Vmax = 0.50

26 outer iter. 23 outer iter. 32 outer iter. 25 outer iter.
c = 31.4370 c = 30.2048 c = 27.3792 c = 25.7800

γ = 10−1 γ = 10−2 γ = 10−1 γ = 10−2

Figure 17: Solver fmincon/sqp, Problem 2, 30× 30 mesh, εc = 10−3, 5 inner iterations.

Tightening to εc = 10−4 the relative tolerance for the instances with γ = 10−2, we obtained
better (cleaner) structures, cf. Fig. 19. In this case, although it reached the maximum allowed
number of iterations, the structure that demanded 40% of the volume practically used all the
available material.

Vmax = 0.40 Vmax = 0.50

300 outer iter. 22 outer iter. 300 outer iter. 19 outer iter.
c = 38.4698 c = 32.9372 c = 32.8506 c = 28.5024

vol = 0.3673 vol = 0.4000 vol = 0.4425 vol = 0.4993

γ = 10−1 γ = 10−2 γ = 10−1 γ = 10−2

Figure 18: Solver MMAorig, Problem 2, 60× 60 mesh, εc = 10−3, 4 inner iterations.

Vmax = 0.40 Vmax = 0.50

300 outer iter. 47 outer iter.
c = 32.9245 c = 28.3322

vol = 0.3996 vol = 0.5000

Figure 19: Solver MMAorig, Problem 2, 60× 60 mesh, εc = 10−4, γ = 10−2, 4 inner iterations.

Figure 20 shows the outcomes of the solver MMAspec for Problem 2 for the combination
of choices of γ and the percentage of volume previously considered.
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Vmax = 0.40 Vmax = 0.50

174 outer iter. 99 outer iter. 273 outer iter. 49 outer iter.
c = 35.5618 c = 33.6923 c = 31.2385 c = 29.9059

γ = 10−1 γ = 10−2 γ = 10−1 γ = 10−2

Figure 20: Solver MMAspec, Problem 2, 60× 60 mesh, εc = 10−4, 4 inner iterations.

An important aspect that deserves attention is the influence of the initialization on the final
structure. To illustrate such a dependence, we depict in Fig. 21 two initial configurations for the
60 × 60 mesh of Problem 2, and the corresponding structures that were obtained by the solver
fmincon/ip, with γ = 10−1 and Vmax = 0.40.

149 outer iter. and c = 34.8151 45 outer iter. and c = 37.0585

Figure 21: Initial and final structures obtained by fmincon/ip: Problem 2, 60 × 60 mesh, γ = 10−1,
Vmax = 0.40, εc = 10−3.

A comparative view of the evolution of the compliance and the average volume of the
structure against the iterations for the solvers under analysis is provided in Fig. 22 for the
instance of Problem 1 with Vmax = 0.40 and the perimeter control parameter set as γ = 10−2.
The corresponding structures are summarized in Fig. 23

To offer the reader an idea of the average CPU time demanded per each call of the solvers
under consideration, we have summarized in Table 1 the results corresponding to the aforemen-
tioned instance. It is worth mentioning that our code is not completely optimized for Matlab,
nevertheless the basic framework is common for all the solvers, so the comparison is consis-
tent. Despite dealing with linear systems that have four times smaller dimensions, the solver
fmincon/sqp costs, per iteration, much more than the other three solvers.

Table 1: Average demanded CPU time for Problem 1, with Vmax = 0.40 and γ = 10−2.

Solver fmincon/ip fmincon/sqp MMAorig MMAspec

Demanded CPU (s) 390.56 1611.03 170.45 350.85

Total calls of solver 15× 5 = 75 11× 5 = 55 13× 4 = 52 26× 4 = 102

Average CPU/call 5.21 29.29 3.28 3.37
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Figure 22: Compliance (blue continuous line) and average volume (green dashed line) against iterations for
the distinct solvers – Problem 1, with Vmax = 0.40 and γ = 10−2.

fmincon/ip fmincon/sqp MMAorig MMAspec

15 outer iter. 11 outer iter. 13 outer iter. 26 outer iter.
c = 72.1631 c = 70.7905 c = 72.1767 c = 73.5408

Figure 23: Problem 1, γ = 10−2, Vmax = 0.40.

Concerning Problem 2, a similar analysis was prepared for the instance with Vmax = 0.40
and γ = 10−2. The comparative evolution of compliance and average volume along the iter-
ations for each solver is presented in Fig. 24, with the corresponding structures summarized
in Fig. 25. Table 2 contains the average CPU time demanded per each iteration of the solvers
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under consideration.
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Figure 24: Compliance (blue continuous line) and average volume (green dashed line) against iterations for
the distinct solvers – Problem 2, with Vmax = 0.40 and γ = 10−2.

fmincon/ip fmincon/sqp MMAorig MMAspec

56 outer iter. 23 outer iter. 22 outer iter. 99 outer iter.
c = 32.6925 c = 30.2048 c = 32.9372 c = 33.6923

Figure 25: Problem 2, γ = 10−2, Vmax = 0.40.
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Table 2: Average demanded CPU time for Problem 2, with Vmax = 0.40 and γ = 10−2.

Solver fmincon/ip fmincon/sqp MMAorig MMAspec

Demanded CPU (s) 2000.64 4385.62 363.75 1372.54

Total calls of solver 56× 5 = 280 23× 5 = 115 22× 4 = 88 99× 4 = 396

Average CPU/call 7.15 38.14 4.13 3.47

4 PERSPECTIVES

The nonlinear programming approach has shown to be an effective strategy for updating the
level-set function, especially when the obtained results are compared, qualitatively speaking,
with those of the codes of Challis (2010) and Otomori et. al (2015) for the same instances.
Nevertheless, it is worth mentioning that the demanded CPU time of our code, which is not
completely optimized, is not comparable with the demanded CPU time of the optimized codes
of Challis (2010) and Otomori et. al (2015). We have addressed two benchmark structures from
the literature.

Four solvers were analyzed, namely fmincon with the interior point strategy, fmincon
with the sequential quadratic programming option, the original MMA of Svanberg (1987) and
a recent modification of the MMA with a spectral updating (Gomes-Ruggiero et. al. (2010)).
The features and peculiarities of each solver were translated into the obtained results. The solver
fmincon/sqp cannot handle large scale problems, so the meshes had to be reduced. Despite
of that, this solver demanded the largest amount of time per iteration among the four solvers,
for both problems under consideration.

In our investigation, as in Dijk et. al. (2012), we have also observed that not only the final
obtained structure depends on the initial configuration, but also that nucleation does not occur.
Another similarity with Dijk et. al. (2012) was the need to prevent gray areas by adopting some
sort of control. We have adopted the perimeter control by means of an extra penalization term
added to the compliance in the objective function.

We have noticed that, at the beginning, the generated sequences have good progresses, but
eventually they take very short steps. It is possible that some preconditioning could accelerate
the iterates (see e.g. Dijk et. al. (2012)) and this might be a line for further investigation.

Our work in progress includes addressing problems with additional constraints, such as
compliant mechanisms, as our approach allows dealing with the original constraints, without
any need of employing a penalization strategy. Following ideas from Otomori et. al. (2011), we
intend to consider a fictitious term at the objective function, to allow nucleation of the structure
as well.
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