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Abstract. The Lagrangian Meshless Smoothed Particle Hydrodynamics (SPH) method is an 

alternative to the traditional mesh Eulerian methods for solving engineering problems. 

Although it began to be used a few decades ago, SPH method has advantages compared to 

methods with meshes, in the numerical solution of classical problems studied in engineering 

courses. The numerical SPH method allows a better visualisation of the spatio-temporal 

evolution of the flow (and the fluid properties), and a lower computational cost in the study of 

complex geometries with topological changes or free surfaces, providing stable numerical 

solutions. There has been an increase in the applications of particle methods in Computational 

Fluid Dynamics (CFD) courses, in the area of fluids and thermal sciences. A computer code 

has been developed and implemented using FORTRAN Programming Language. Three 

classical engineering problems have been simulated: diffusion in a flat plate, still fluid within 

an immobile reservoir and dam breaking. In code validation, numerical results obtained 

showed a good agreement with the analytical and experimental results reported in the 

literature. The numerical code developed and presented in this work, is a valuable tool for the 

teaching of CDF in engineering courses. 

Keywords: CFD education, Computer code, Smoothed Particle Hydrodynamics method, SPH, 

Meshless method, Engineering courses. 
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1 INTRODUCTION 

The Eulerian view is historically the most commonly used in modelling of physical 

problems involving fluids. This modelling requires the use of numerical methods employing 

grids or meshes, such as finite differences (FDM), finite volumes (FVM) and finite elements 

(FEM),  for the solution of partial differential equations (PDEs) or integral formulations (Liu 

& Liu, 2010). Based on an adequately meshed preset, the governing equations can be 

converted to a set of algebraic equations with nodal unknowns for the field variables. 

However, these Eulerian methods have limitations for applications in various types of 

complex problems.  

The greatest difficulties in using meshes are in ensuring consistence. Employing meshes 

can lead to a number of difficulties when dealing with fluid flow problems with free surface, 

mobile interfaces, complex geometries and topological changes. If there are these features, 

generation of a mesh, a prerequisite for the numerical simulation of quality, is a difficult 

process, both time-consuming and expensive. 

Lagrangian modelling is based on the hypothesis that the problem domain can be divided 

into a finite number of particles that do not interact with one another. Each particle receives 

the coordinates that define its position in space; the physical properties of each Lagrangian 

element are found at each instance in time.  

The Lagrangian particle model is meshless and has been an alternative applied in 

research, pointing to the use of more effective computational methods for solving complex 

problems, providing stable and accurate numerical solutions for PDEs or integral equations. 

Some of the advantages of the use of Lagrangian modelling regarding the Eulerian are the 

simplicity and lower computational cost in complex geometries, not needing the use of 

meshes, non-production of numerical oscillations, conservation of mass at the Lagrangian 

element, and finally the graphical visualisation of the results to allow for better understanding 

of the spatio-temporal evolution of the flow. 

Until a few decades ago, Lagrangian modelling has not been used in mathematical-

numerical modelling problems in Fluid Mechanics. Fox & McDonald (1988) reported that 

describing the movements of individual particles would be impractical, employing another 

type of description for the fluids being more convenient. For a long time, Lagrangian 

modelling was put aside in favour of Eulerian methods.  

One of the critical points of particle models is the processing time: in general, higher than 

that required by mesh methods. However, the progress of the processing techniques, the rapid 

spread of multi-core processors, and parallelisation, made possible the use of particle 

methods, without any viability in problems of fluid mechanics until some years ago. 

Currently, parallelisation of the graphics processing units (GPUs), using Compute Unified 

Device Architecture (CUDA), developed by NVIDIA, allows the use of more than one 

million particles in the discretisation of the fluid domain (Crespo et al., 2011).  

The remainder of this article is organised as follows. In Section 2, methodology for the 

analysis of a physical problem in CFD is presented. The fundamentals of the SPH method are 

in Section 3. In Section 4, the computer code developed is presented. The validation of the 

computer code (with numerical simulations performed and results analysis) is shown in 

Section 5. Finally, the conclusions are presented in Section 6. 
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2 PHYSICAL PROBLEM ANALYSIS METHODOLOGY 

To obtain the solution of any physical problem in Computational Fluid Dynamics, the 

researcher/ programmer should go through the following steps: observation and understanding 

of the physical problem; development or use of a mathematical model able to describe it; 

choice of a numerical method capable of properly solving the equations of the mathematical 

model, with consistency, speed and accuracy; implementation or use of an existing numerical 

code to perform the numerical simulations; and, finally, the analysis of the results from the 

computer simulations. Figure 1 shows these steps in a flowchart.   
 

 

Figure 1. Procedure for numerical simulation of a physical problem. 

With specific regard to the choice of numerical method to be employed in the solution of 

Fluid Mechanics problems, SPH is increasingly used for the following reasons: 

 Free surfaces, interfaces and mobile boundaries can be naturally traced by particles in the 

simulation process; 

 Ease of capturing the free surfaces and their topological changes;  

 No need for remeshing (one characteristic of mesh methods) at each numerical iteration, 

which decreases the computational cost in the remeshing operations; 

 Conservation of mass for each Lagrangian element (particle); 

 The particles’ history can be easily obtained, and their visualisation is available, allowing 

for a better understanding of the phenomenon through time; 

 Control of undesirable numerical diffusion, a characteristic problem of methods based on 

meshes. 
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3 SPH METHOD FUNDAMENTALS  

SPH is based on the valid mathematical identity for a scalar function  f X , defined and 

continuous over the whole domain: 

    f f dX   X X X X  (1) 

where 

  f X  is a scalar function defined at the fixed point  x, yX , 

   X X  is the Dirac Delta function: 
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By replacing the Dirac Delta function with the smoothing function, ,W  the 

approximation to the function at position X is obtained: 

     ,f f W h dX   X X X X  
       (2) 

where 

h  is the support radius, 

x ' y 'dX d d   is the infinitesimal area element. 

The essence of the SPH method is in the discretisation of the domain,  , in a finite 

number of particles and in these Lagrangian elements to obtain the values of the physical 

properties through from weighted interpolations, from the properties of the particles in the 

vicinity. Only the neighbouring particles, which are within the influence domain (at a 

maximum distance  kh  of the fixed particle considered, k  being a scale factor that depends 

on the kernel employed), contribute to its behaviour. 

For the solutions obtained in the interpolations to be representative of the domain of the 

problem, the number of neighbouring particles within the influence domain must be five, 21 

and 57 in 1D, 2D and 3D cases, respectively (Liu & Liu, 2003). Figure 2 shows the 

arrangement of particles within the influence domain. 

Searching for the neighbouring particles can be performed directly or using grids, which 

leads to a lower number of mathematical operations and reduces the computational cost (Liu 

& Liu, 2003; Gesteira et al., 2010). Figure 3 shows the direct search (in which all pairs of 

particles " ab " at the domain will have the distances calculated and compared to the kh  value) 

and the use of a grid, which reduces the number of searching operations (only particles within 

the shaded region, with three, nine or 27 cells, in 1D, 2D or 3D cases, respectively, will be 

verified, whether or not they neighbour a reference particle). 
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Figure 2. Graphical representation of the influence domain.  (a)  The reference (fixed) particle, a , has 

neighbouring particles ( b ) within the influence domain. (b) The kernel (W) ensures a greater 

contribution from the nearest neighbouring particles for the value                                                                  

of the physical property in the reference particle.  

 

 

(a) 

 

(b) 

Figure 3.  Neighbouring particles search.  (a)  Directly.                                                                                                 

(b) Using a grid (Adapted from: Liu & Liu, 2003). 

Different kernels can be used, and so that they are considered suitable for interpolation, it 

is necessary that each one follow certain properties: smoothness, positivity, symmetry, 

convergence, decay, compact support, and normalisation within the domain of influence. The 

cubic spline kernel, proposed by Liu & Liu (2003), is presented in Eq. (3). This smoothing 

function and its derivatives have a desired mathematical behaviour, favourable for the 

representation of the physical properties studied. 
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(3) 

where 

aX  and bX  are the positions of the fixed and neighbouring particles, respectively. 
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Other kernels are used in the SPH method: quartic proposed (Lucy, 1977); quintic 

(Gesteira et al., 2010); quintic spline (Morris, 1997); new quartic (Liu & Liu, 2003), each 

being recommended for the study of a particular physical problem. Figure 4 shows the kernel 

used by Lucy (1977) in his pioneering work, and the cubic spline employed here.  

                               

                          (a)             

     

                                         (b) 

Figure 4. Kernels and their first-order derivatives. (a) Lucy’s (1977) kernel and                                                              

(b) Cubic spline, used here. Adapted from Liu & Liu (2003). 

SPH approaches physical properties (such as density), gradients (pressure gradients), 

divergence (velocity divergence) and Laplacians (temperature and velocity Laplacians) 

related to fluid flow, with a second-order error. 

The general equation for the approximation of a scalar physical property of a fixed 

particle a  is: 

 
1
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n

b

b
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b
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(4) 

For the divergence of a vectorial physical property, the following form can be used: 
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(5) 

For gradient of aA  (symmetric form): 
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(6) 

The following expression can be used for the Laplacian approximation of a scalar 

property (Fraga Filho & Chacaltana, 2014):  
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(7) 
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where 

  is the mathematical vector operator nabla;  

aX  is the position of the particle a ; 

bX  is the position of the particle b ; 

aA  is the scalar physical property approximated by the fixed particle a ;  

bA  is the scalar physical property of the neighbouring particle b ;  

aA  is the vector physical property of the reference particle;  

bA  is the vector physical property of the neighbouring particle b ; 

n is the number of neighbouring particles within the influence domain; 

bm  is the mass of particle b ; 

W is the kernel; 

h is the support radius; 

b  is the density of the neighbouring particle b . 

In the SPH method, created for the simulation of compressible fluid, the pressure is an 

explicit function of the local density of the fluid. In the dynamic case, the compressible fluid 

is approximate to an incompressible fluid through a quasi-compressible fluid, and pressure is 

calculated by an equation of state. The Tait Equation is commonly used (as used here) to 

predict the dynamic pressure (Batchelor, 2000):  

( )

0

1a
dyn aP B






  
   
   

 
(8) 

where 

( )dyn aP  is the dynamic pressure on the fixed particle; 

a  is the density of the fixed particle; 

o  is the density of the fluid at rest;  

7  ; 

B  is the term related to the density fluctuations of the fluid. 

In hydrostatic cases, it is suggested employment of the modified pressure concept 

(Batchelor, 2000). 

A simple boundary treatment in SPH is the implementation of the collisions of particles 

against solid walls, considered as being well-defined planes. Figure 5 shows the initial and 

final positions, 0C  and fC , of the centre of mass of a particle after successively colliding 

with two planes ( A  and B ) in a numerical iteration (Fraga Filho, 2014). The point 1C  is the 

final position that would be achieved by the particle’s mass centre if there were no walls 

delimiting the field. 

An analogy to molecular dynamics is also used in the boundary treatment in SPH. The 

solid boundary treatment uses a row of frozen particles (virtual particles) located on the solid 

contour to produce a highly repulsive force acting on the particles close to the contour 

(Monaghan, 1994). This type of virtual particles is known as type I (located on the contour). 

Prevention of the moving solid particles penetrating into contours is performed by a repulsion 
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force (similar to the Lennard-Jones molecular force) that simulates the boundary conditions 

with zero normal velocity. In certain situations, virtual particles of type II can be located 

outside the contour (Liu & Liu, 2003). Figure 6 shows the use of both types of virtual 

particles, in order to simulate the solid contours. 
 

 

 

Figure 5. Collisions experienced by a particle in a time step. 

 

 

Figure 6. Schematic illustration of the solid contour region. Arrangement of the virtual particles of  

type I (line on the contour) and of the virtual particles of type II (in an extended area beyond the 

domain). 
 

A broader presentation of the boundary conditions employed in SPH method may be 

encountered in (Fraga Filho, 2014). 

In regions near the boundaries, the reference particles do not have a full influence 

domain, which reduces the accuracy of the interpolations performed. This phenomenon is 

known as particle inconsistency. For consistency restoration, some workers have proposed the 

application of a correction factor, presented as the Corrected Smoothed Particle Method 

(CSPM) (Chen et al., 1999; Fraga Filho, 2014). Figure 7 shows the occurrence of kernel 

truncation.  

 

                                        (a)                                       (b) 

Figure 7. Influence domain in a polar coordinate system. (a) Complete and (b) incomplete. 
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3.1   SPH Approximations for Differential Equations in Fluid Mechanics 

and Heat Transfer 

Modelling of fluid flows and energy transport is performed by the conservation (mass 

and energy) and momentum balance equations. The evolution of the field densities, velocities 

and energy is defined by Eqs. (9)–(11). Table 1 shows the conservation and momentum 

balance equations, according to the Lagrangian frame of reference, and their approximations 

by SPH to a viscous and incompressible fluid. 

Table 1.  Differential Equations and SPH Approximations 

Differential Equation 

(Continuum) 

            SPH Approximation 

  (Domain discretised by particles) 

Mass conservation: 

d
.

dt


  v  

            
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dt

n
a

b ab a b
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m W h
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 v . X X  
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Momentum balance: 
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(10) 

Energy conservation: 

v
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dt
)

1
( HP q
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(11) 

where: 

v  is the velocity;  

g  is the acceleration due to gravity;  

  is the kinematic fluid viscosity;  

P  is the pressure;  

t is the time;  

e  is the specific internal energy; 

v is the energy dissipation per unit volume; 

q  is the conduction heat flux; 

Hq  is the heat generated by other sources per unit volume; 

ab a b v v v ; 

a  and b  are subscripts that refer to fixed and neighbouring particles, respectively. 
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4   COMPUTER CODE 

Figure 8 shows the flowchart of the computer code developed and implemented using 

FORTRAN programming language. The algorithm has been written for serial computation.  

 

Figure 8. Algorithm implemented with all  routines. 

Below follows a brief presentation of the code and its routines.  

1. Initial conditions: the initial positions, velocities, densities, temperatures, support radius 

and other fluid particles’ physical properties are set to the beginning of the simulation. 

2. Boundary conditions definition: the technique to be employed for the boundary treatment  

is defined.  

3. Searching for the neighbouring particles: particles within the domain of influence of a 

reference particle may vary over time, and the search must be performed at each numerical 

iteration.  

4. Pressure calculus: in this routine, updating of the pressure field acting on the particles is 

performed.  

5. Kernel definition: smoothing function used in interpolations is  chosen. 

6. Mass conservation equation solution: the particles’ density calculus for each particle is 

conducted from solution of Eq. (9). 

7. Obtaining of surface forces: approximations to surface forces acting on the particles are 

obtained (the first two terms of Eq. (10), pressure and viscous forces, respectively). 

8. External forces application: the last term on the right side of Equation (10) is the sum of all  

external forces. In the class of external forces (third term on the right side of the Eq. (10)) is 
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the gravity. Other forces can also be considered such as the repulsive forces exerted by the 

particles on the contours of fluid particles (Lennard-Jones forces) and  free surface forces,  if 

they exist in the studied problem. 

9.  Energy conservation equation solution:  SPH approximations are employed for solution 

of Eq. (11). 

10. Momentum balance equation solution:  particles’ accelerations field is obtained from 

solution of Eq. (10). 

11. Temporal integration:  prediction of the particles’ properties to the next iteration.  The 

Courant-Friedrichs-Lewy (CFL) stability criterion was applied in the time-step setting to 

ensure convergence of results (Courant et al., 1967).  

12. Output files: these files are obtained at the end of each numerical iteration and, from 

their data, graphical representations of the fluid’s physical properties are generated.  

13. Accuracy: this routine verifies whether the desirable accuracy has been achieved or if a 

new iteration will have to be executed. In the latter case, we must return to step 2 (boundary 

conditions definition) and follow the remaining steps until a new verification of the accuracy 

of numerical results be performed. 

In steps 6 and 7, the correction of the particles’ physical properties (density and pressure 

gradient) located near the boundaries can be made using the Corrected Smoothed Particle 

Method (CSPM) (Chen et al., 1999; Liu and Liu, 2010).  

5    CODE VALIDATION  

Throughout the implementation, the numerical code was used for solution of some 

problems. Before the beginning of simulations, an examination of the physical phenomenon  

was carried out to select the routines to be used (Fig. 8 shows all available routines). From the 

numerical results analysis, made through comparisons with analytical and results reported in 

the literature, it has been possible to validate the code for application in studied cases. In this 

section, the set of problems, their results, and a discussion of their results are presented and 

discussed. 

5.1  Heat Diffusion in a Homogeneous Flat Plate  

In the absence of pressure fields, energy dissipation, heat sources and considering a 

material with a constant thermal conductivity, energy conservation equation is written as 

follows (in a thermal steady state): 

2 2

2 2
0

x y

T T 
 

 
 

(12) 

 

The dimensions and boundaries of the plate are shown in Fig. 9. The whole domain has 

temperature 0T  equal to 0 C , at the initial time; that is, the initial temperature is uniform. The 

prescribed boundary conditions (Dirichlet boundary conditions) have been imposed: 0 C  at 

right, left and lower sides and 100 C  at upper side of the plate. 
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The calculation of the Laplacian of temperature for each iteration was done explicitly, in 

a polar coordinate system, by solving the following equation:  

   
2 2 ( , ) 1

2 .
2 2x 1y

m
n m mT T W r hma a b T X T Xa b r r

b abb


 
  
    

 

  
     

 
 

(13) 

where 

m  is the current time step, b  is the subscript indicating each neighbouring particle of the 

fixed particle, which is denoted by the subscript a , n is the number of particles within the 

domain of influence, aab br  X X  is the distance between two particles, and r is the radial 

direction. 

Pletcher et al. (2013) employed the technique of the separation of variables to obtain the 

solution by series for the temperature distribution in the flat plane. This solution has been 

used as a standard for comparison with the results obtained by SPH simulations. 

In the defining of the boundaries, virtual particles of type I were fixed at the contours at a 

ratio of two virtual particles for each real particle and the temperatures of the sides of the plate 

were attributed to them. Virtual particles’ properties were not subject to interpolations to 

predict their temperatures (Dirichlet boundary condition). The particles inside the domain had 

their temperatures initialized to 0 °C and the thermal diffusivity was defined as 1.0 m2/s, 

which was held constant for all simulations. The influence domain ( kh ) was defined as 

2.5 xd , which was invariable during simulations. The time step was 1.0 x 10-5 s.  

Simulations were carried out starting from the transient until the steady state was reached. 

Different combinations of numbers of particles (50, 60, 70, 80, and 90 per side of the flat 

plate) and kernels have been used. Figure 9 shows the initial distribution of 50 × 50 particles 

in the domain (and the prescribed temperatures at the boundaries, attributed to the virtual 

particles) and the temperature distribution when the steady state was reached (t = 0.431 s).  

For internal regions of the domain, the approximation of the Laplacian of the temperature 

by the SPH method gave results that were in agreement with the analytical solution. 

 
 

                             (a)                                 (b) 

Figure 9. (a) Initial distribution of 50 × 50 particles in the domain and the prescribed temperatures at the 

boundaries (attributed to the virtual particles). (b) Temperature distribution when the steady state has 

been reached (a cubic spline kernel was employed). 
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In all combinations of particle numbers and kernels, particle inconsistency has been seen 

in the regions near the boundaries, because kernel truncation correction has not been realized. 

The largest relative errors found in the steady state (obtained from the analysis of the 

differences between the analytical solution and the SPH numerical results) occurred in a few 

positions of the lower corners of the flat plate.  The complete analysis of simulations results  

is in (Fraga Filho & Chacaltana, 2014,   Fraga Filho, Pezzin & Chacaltana, 2014). 

Figure 10 presents the algorithm implemented in a flowchart scheme (wherein the 

enabled routines in the computer program is shown). 

 
 

 Figure 10. Algorithm implemented for diffusion in a homogeneous flat plane. 

5.2    Still Fluid within an Immobile Reservoir  

This is one of the first problems that must be understood and solved in Fluid Mechanics. 

There is a tank filled with an incompressible, uniform and isothermal fluid. The student must 

be able to understand the physical problem and, from there, apply the physical laws of mass 

conservation and momentum balance, and the concept of the modified pressure (Batchelor, 

2000). Using this concept, the momentum balance equation (Eq. (10)) is rewritten as follows: 
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where mod( )aP  and mod( )bP  are the modified pressures on the fixed particle and the 

neighbouring particle, respectively. 

Figure 11 shows the regular initial arrangement of particles in the reservoir.  

 
Figure 11. Initial distribution of fluid particles (red) and virtual particles (blue). 

The latter are in an expanded region of the domain. 

In hydrostatic case, modified pressure on all particles is null (Fraga Filho & Chacaltana, 

2015).  Figure 12 (a) presents the final results (in which the hydrostatic equilibrium has been 

maintained). Figure 12 (b) presents the constant hydrostatic pressure field, in the colour scale 

graph. 
 

 
                                        (a)                                                                      (b)                                       

Figure 12. (a) Positions of the particles within the reservoir, time invariant. (b) Hydrostatic                                                        

pressure field on the particles, constant with time. 

After starting the simulation, at the time instance 5.0 s, the coincidence of the positions of 

the centers of mass at that moment and their initial positions was verified, in agreement with 

the analytical solution. 

The flowchart, in Fig. 13, shows the enabled routines in the computer program used for 

solution of the hydrostatic problem. 
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Figure 13. Flowchart of the numerical code for the reservoir problem containing an                           

incompressible fluid and open to the atmosphere. 

5.3  Dam Breaking 

This is a classic problem of fluid dynamics. Dam breaking studies are of great importance 

in engineering, being related to the prevention of accidents, which can cause serious 

environmental consequences and also damage to inhabitants located in the vicinity. 

The fluid is considered incompressible, uniform and isothermal; the Navier-Stokes 

equations, mass conservation and momentum balance (Eqs. (9) and (10)), must be solved.  

Figure 14 shows the initial distribution of particles’ centers of mass and the evolution of 

the wave until the time 1.00 s.  

The numerical results showed good agreement with experimental results reported in the 

literature. A detailed description of simulations performed and all results obtained can be 

found in Fraga Filho (2014). 
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t = 0.00 s t = 0.30 s 

  

t = 0.60 s t = 1.00 s 

 
 

Figure 14. Dam breaking evolution. 

In Figure 15, a flowchart shows the numerical code implemented for solution of dam 

break problem. 
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          Figure 15. Flowchart of the numerical code implemented for dam breaking. 

6    CONCLUSIONS 

The Lagrangian approach is still little used in engineering studies. However, due to the 

advances in computer processing techniques, there has been an increase in the applications of 

the Lagrangian Meshless SPH Method in Computational Fluid Dynamics (CFD) courses. SPH 

is a problem-solving alternative that has advantages compared to traditional methods using 

meshes, e.g. better visualisation of the spatio-temporal evolution of the flow, and a lower 

computational cost in the study of complex geometries with topological changes or free 

surfaces beyond the control of undesirable numerical diffusion. From the graphical analysis of 

the results, by viewing the properties of particles (which may be fields of positions, velocities, 

accelerations, pressures, among others) a better understanding of the phenomenon that occurs 

is reached.  

The numerical code developed has been employed in the simulations of some 

phenomena: diffusion in a flat plate, still fluid inside an immobile reservoir and dam breaking. 

In code validation, numerical results obtained showed a good agreement with the analytical 

and experimental results reported in the literature.  

The code implemented, and presented in this work, is a valuable tool for CFD education 

in engineering courses. 
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