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Abstract. In this work a macroscopic viscoplastic model, accounting for strain, strain rate
hardening and instantaneous rate sensitivity of FCC metals, is formulated. Within the present
approach, a single phenomenological internal variable representing an effective microstructural
feature is introduced. In a phenomenological way, this internal variable is related to hardening
mechanisms associated with large strain processes. Aiming at applying the constitutive proposal
in solving engineering problems, associated numerical formulation is also described. Reason-
ing on the numerical context, an exponential implicit integration scheme is adopted together
with an elastic predictor-plastic corrector algorithm. Constitutive capabilities are assessed by
solving simple numerical problems involving high-strain-rate deformation. Simulation results
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and comparisons with experimental data available in the literature, considering an annealed high
purity copper, demonstrate the model aptitude in predicting strain rate history effects on mate-
rial response. In general, proposed model proves to be a useful modeling alternative to describe
the macroscopic behavior of FCC metals subjected to high-strain-rate cold deformation.
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1 INTRODUCTION

Nowadays, several engineering applications, such as high speed forming and machining
of metals, analysis of structural crashworthiness in the automotive and aerospace industries,
military and defence activities, involve high strain rates and large strain deformation processes.
Considering these applications, to properly predict the material behavior under extreme condi-
tions, as high velocity and large strains, a constitutive model have to consider loading history
effects. For example, the hardening response of FCC metals is strongly rate-dependent at high
velocity conditions (Klepaczko, 1975; Chiem and Duffy, 1983; Tanner and McDowell, 1999;
Huang and Tao, 2011; Luo et al., 2012). However, a constitutive formulation to solve engineer-
ing problems should incorporate proper constitutive capabilities, while keeping its simplicity in
order to save computational efforts. On one hand, physically-based approaches (Follansbee and
Kocks, 1988; Klepaczko, 1988; Voyiadjis and Almasri, 2008; Gao and Zhang, 2012; Rodríguez-
Martínez et al., 2011) can provide detailed constitutive descriptions considering loading history
effects by means of dislocation density evolution equations. On the other hand, physical for-
mulations increase the model complexity and the number of constants to be adjusted (see e.g.
discussion of Rusinek and Jankowiak (2014)). Therefore, reasoning on model simplicity, with
the aim of providing constitutive approaches containing lower number of material constants,
and thus requiring less experiments to identify these parameters, many researchers (Bodner and
Rubin, 1994; Molinari and Ravichandran, 2005; Durrenberger et al., 2008; Rodríguez-Martínez
et al., 2009) have proposed phenomenological (or semi-physical) models. Toward this objec-
tive, dos Santos et al. (2016b) recently proposed a simplified viscoplastic model, which provided
good correlations with high strain rate experiments of an annealed OFHC copper.

As already mentioned, in order to guarantee appropriate predictions and to save computa-
tional time, engineering simulations require accurate, efficient, and robust numerical tools. The
finite element (FE) method has been widely employed in solving nonlinear initial boundary
value problems (Simo and Hughes, 1998; de Souza Neto et al., 2008). However, to integrate a
local constitutive model within a FE framework, the update of stress and state variables from a
given strain increment, and the calculation of consistent tangent modulus have to be carried out
(Simo and Hughes, 1998; de Souza Neto et al., 2008). Aiming at accomplishing these tasks and
improving the computational efficiency, several viscoplastic implicit integration algorithms for
large strain problems have been proposed (Lush et al., 1989; Weber and Anand, 1990; Zaera and
Fernández-Sáez, 2006; Mourad et al., 2014). Specifically, Lush et al. (1989) proposed a time-
integration procedure for implementing the model of Anand (1985) into a displacement-based
FE context. Zaera and Fernández-Sáez (2006) implemented the constitutive model of Rusinek
and Klepaczko (2001) exploring both overstress (Perzyna, 1966, 1971) and consistency (Wang
et al., 1997) vicoplastic models. Mourad et al. (2014) proposed an integration scheme in or-
der to incorporate the MTS model of Follansbee and Kocks (1988) into a FE framework. In
order to numerically investigate strain rate hardening effects on FCC metals, dos Santos et al.
(2016a) employed the previously proposed viscoplastic model (dos Santos et al., 2016b) in high
strain rate simulations. In general, mostly of the large strain formulations are based on the well-
known multiplicative decomposition of the deformation gradient (Lee, 1969; Mandel, 1972),
and generally associated algorithmic formulations preserves material objectivity.

The present work aims in summarizing and exploring the main modeling results obtained
in previous researches concerning high strain rate deformation processes (dos Santos et al.,
2016b,a). The whole constitutive approach consists of a simple and robust modeling framework
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to account for strain, strain-rate hardening and viscous response of FCC metals under high strain
rate straining. Constitutive formulation adopts a von Mises plasticity considering a strain-rate-
dependent isotropic hardening whose evolution follows the overstress framework of Perzyna
(1966, 1971). In the present approach, the isotropic hardening is given as an evolution results
of a single scalar internal variable describing an effective microstructural feature (Molinari and
Ravichandran, 2005; dos Santos et al., 2016b). The stress hardening variable is composed
by two uncoupled contributions: A1 and A2. The first can be qualitatively associated with
dislocations accumulation processes. The second contribution, A2, can be related to hardening
mechanisms responsible for the deformation Stage IV, in which the main hardening contribution
is due to strain-induced granular misorientations.

As commented earlier, the continuum formulation to be employed in this work is based on
the viscoplastic model proposed in (dos Santos et al., 2016b). In addition, adopted numerical
approach (dos Santos et al., 2016a) follows a total Lagrangian description, considering the clas-
sical multiplicative decomposition of the deformation gradient. Furthermore, a fully isotropic
material is considered, whose constitutive formulation stated in terms of the Hencky (logarith-
mic) deformation and the rotated Kirchhoff (or Mandel) stress. Concerning the reversible be-
havior, a linear hyperelastic response is assumed. In addition, following the works of Eterovic
and Bathe (1990) and Weber and Anand (1990), an exponential implicit integration scheme is
adopted. Related nonlinear equations are solved by using an elastic predictor-plastic correc-
tor algorithm. Therefore, adopted numerical strategy furnishes incremental elastic-viscoplastic
solution associated with each reversible or irreversible deformation increment.

The work is organized as follows. Section 2 presents an overview of the constitutive model
adopted (dos Santos et al., 2016b). Section 3 outlines the local incremental constitutive formu-
lation, recalling the elastic predictor-plastic corrector algorithm. In Sec. 4, in order of demon-
strating model aptitude, and exploring constitutive descriptions associated with loading history
effects, some numerical simulations are performed: namely a decremental strain rate testing
and a constant strain rate loading followed by stress relaxation. These simulations consider the
model parameters obtained by dos Santos et al. (2016b) considering an annealed OFHC copper.
Numerical results are compared with experimental data available in the literature (Tanner and
McDowell, 1999; Jordan et al., 2013), from these comparisons good correlations are observed.
The work is closed with conclusions and comments in Sec. 5.

2 CONSTITUTIVE FORMULATION

We adopt the multiplicative1 decomposition of the deformation gradient (Lee, 1969; Man-
del, 1973)

F = F eF vp, (1)

where F = ∂ϕ(X,t)
∂X

, ϕ is the displacement function mapping an initial point X ∈ Ω0 onto
a current one x ∈ Ω at time t, i.e. x = ϕ (X, t). Terms F e and F vp are the elastic and
viscoplastic part of F . Adopting decomposition (1), the specific Helmholtz free-energy can be
split (Lubliner, 1984),

ψ = ψe (Ee) + ψvp (α) , (2)

1Along this work single contractions between second-order tensors are omitted, i.e.,S·T = ST , in components
(ST )ij = SikTkj .
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into its elastic ψe and inelastic ψvp parts. Tensor Ee = ln (U e) is the Hencky elastic strain
with U e2 = (F e)T F e and F e = FF vp−1

. A single internal variable α is assumed to describe
irreversible material behavior (see for instance references (Coleman and Gurtin, 1967; Rice,
1971; Lubliner, 1972, 1984)). In this work we assume standard quadratic forms

ψe = 1
2E

e : De : Ee and ψvp = 1
2Hα

2, (3)

where De is a symmetric positive-definite forth-order elastic tensor and H ≥ 0 is the hardening
modulus. Furthermore, isotropic elasticity is considered in subsequent analysis:

De = 2µI +
(
κ− 2

3µ
)
I ⊗ I, (4)

where I, I , µ and κ are the fourth-order and the second-order identity tensors, the shear and
bulk modulus, respectively. Components of I are Iijkl = 1

2 (δikδjl + δilδjk) with δij denoting the
Kronecker’s symbol.

Associated thermodynamic forces obey the constitutive equations

τ̄ = ρ0
∂ψe

∂Ee = De : Ee and A = ρ0
∂ψvp

∂α
= Hα, (5)

being τ̄ the rotated Kirchhoff stress (Eterovic and Bathe, 1990), which is related to the Kirchhoff
stress tensor τ by means of the right rotation tensor R = FU−1 with U 2 = F TF , such that
τ̄ = RTτR. In addition, τ and the Cauchy stress tensor σ are related through τ = Jσ
with J = det (F ). Parameter A stands for the isotropic hardening associated with α. In what
follows, a von Mises yield criterion, together with an isotropic hardening A, is adopted

f (τ̄ , A) =
∥∥∥τ̄D∥∥∥−

√
2
3 (σy + A) , (6)

in which
∥∥∥τ̄D∥∥∥ =

√
τ̄Dij τ̄

D
ij , τ̄D = τ̄ − 1

3tr (τ̄ ) I is the deviatoric part of τ̄ and σy is the initial
yield stress.

2.1 Evolution equations

The viscoplastic strain rate D̄
vp = sym

(
Ḟ
vp
F vp−1)

follows an associative evolution,

D̄
vp = λ̇

∂f

∂τ̄
(7)

where the viscoplastic multiplier λ̇ is given by (Perzyna, 1966, 1971)

λ̇ = 1
ϑ

Θ (〈f〉 , A) . (8)

In the above constitutive relation, operator 〈x〉 ≡ 1
2 (x+ |x|) denotes the Macaulay brackets,

ϑ ≥ 0 is the material viscosity parameter and Θ ≥ 0 is a convex overstress function of both f
and A. Hardening variable A is given by

A = A1 + cA∞ε, (9)

where c ≥ 0 is a material constant, A∞ is the work hardening saturation, A1 can be associated
with hardening induced by dislocation storage, and term cA∞ε can be related to geometric
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hardening due to strain-induced misorientations. Evolution of A1 is given by

Ȧ1 = H1

(
1− A1

A∞

)
ε̇, (10)

where H1 is the hardening rate and

ε̇ =
√

2
3
∥∥∥D̄vp

∥∥∥ ≥ 0 (11)

is the accumulated viscoplastic strain rate. Considering a constant rate ε̇ , Eq. (10) is directly
integrated, yielding a Voce hardening law (Voce, 1948),

A1 − A∞
A1i
− A∞

= exp [−δ (ε− εi)] . (12)

Parameters A1i
and εi are initial values associated with A1 and ε, respectively. In the present

formulation we assume a constant ratio δ = H1
A∞

, and a rate dependence is assigned to A∞.
Combining Eqs. (9) and (12), we have

A = Ai + A∞c (ε− εi) + [A∞ (1 + cεi)− Ai] {1− exp [−δ (ε− εi)]} , (13)

where Ai is the initial hardening. Considering that Ai = εi = 0, a reduced version of Eq. (13)
is obtained,

A = A∞ [1 + cε− exp (−δε)] , (14)

which can be seen as a modified Voce hardening rule. Hardening equation (13), obtained based
upon the assumption of constant rate ε̇, is usefull to be employed modeling constant strain
rate loading processes. Concerning rate-dependence of parameter A∞, the following relation is
adopted (see dos Santos et al. (2016b)):

A∞ = [1− β (ε̇)]Alwr∞ + β (ε̇)Aup∞ , (15)

where Alwr∞ is the quasi-static hardening saturation measured at a lower reference strain rate
ε̇lwr � 1 and Aup∞ is the value associated with an upper reference rate ε̇up � 1. A functional
form of β satisfying β (ε̇lwr) = 0 and β (ε̇up) = 1 is adopted,

β (ε̇) =
(
ε̇− ε̇lwr
ε̇up − ε̇lwr

)ξ
, (16)

in which ξ > 0 is a material constant.

In the present approach, an overstress function Θ (〈f〉 , A) based on that proposed by Perić
(1993) is adopted,

ϑλ̇ = Θ (〈f〉 , A) =
(
〈f〉+R

R

)m
− 1. (17)

Considering this function for f ≥ 0, the inversion with respect to λ̇ and f yields

f = Θ−1
(
λ̇, A

)
= R

[(
1 + ϑλ̇

) 1
m − 1

]
, (18)
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in which 1
m

is the rate sensitivity parameter and R (A) is a characteristic size of the elastic
domain. Considering the von Mises yield criterion of Eq. (6), we have

R (A) =
√

2
3 (σy + A) . (19)

2.2 Analytical constitutive descriptions

At this point, before going ahead, we summarize the constitutive formulation considering
a rigid-viscoplastic material subjected to uniaxial stress state imposed in a constant rate loading
(ε̇ = cte). This simplification is carried out in order to readily provide a reduced uniaxial stress
model and to highlight analytical constitutive features associated with the present formulation.
Therefore, from Eqs. (6), (18), by assuming a uniaxial stress τ̄11 the following reduced equation
is obtained (see dos Santos et al. (2016b)):

|τ̄11| = (σy + A)
1 +

√
3
2ϑε̇

 1
m

. (20)

In which, in view of Eq. (14), we have

A = A∞ [1 + cε− exp (−δε)] , (21)

where, from Eqs. (15) and (16), saturation parameter is given by

A∞ = Alwr∞ +
(
ε̇− ε̇lwr
ε̇up − ε̇lwr

)ξ (
Aup∞ − Alwr∞

)
. (22)

Table 1: Material properties and model parameters associated with annealed OFHC copper (dos Santos
et al., 2016b).

E ν σy δ c Alwr∞ Aup∞ ε̇lwr ε̇up ξ ϑ m

[GPa] [−] [MPa] [−] [−] [MPa] [MPa]
[
s−1] [

s−1] [−] [s] [−]

112 0.33 35 6.46 0.42 233 420 10−4 104 3.16 1.2× 103 105

Reasoning on this reduced uniaxial stress model, we adopt material parameters obtained
by dos Santos et al. (2016b) using experimental results2 of an annealed OFHC copper (Nemat-
Nasser and Li, 1998; Tanner and McDowell, 1999; Jordan et al., 2013). Those material parame-
ters are given in Tab. 1. Then, reasoning on the reduced model of Eqs. (20)-(22) and parameters
of Tab. 1, flow stress can be calculated as an explicit function of both strain ε and strain rate ε̇, as
can be seen in Fig. 1(a). Assuming a given strain level of ε = 0.2, the flow stress rate-sensitivity
is shown in Fig. 1(b), where the model flow stress curve (|τ̄11| v.s. ε̇) is also compared with ex-
perimental data of Jordan et al. (2013). Furthermore, in order to demonstrate the strain rate
influence on the hardening response, in Fig. 1(b) the yield stress curve

(
σy + A v.s. Ė11

)
is also

displayed. In this figure, up to strain rates close to 103 s−1 the quasi-static strength (σy + A)
2Experiments report true stress-true strain curves. However, assuming a rigid-viscoplastic material under a

simple tensile/compression testing, the uniaxial Cauchy stress σ11 and rotated Kirchhoff stress τ̄11 measures are
coincident.
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Figure 1: (a) Model flow stress is terms of (ε, ε̇) compared with reference experimental data; (b) Model
rate-sensitivities for ε = 0.2 compared with reference experimental data (Ref.) and those of Jordan et al.
(2013) (Jordan).

is practically rate-independent and for strain rates exceeding 103 s−1 it becomes strongly rate-
dependent. This behavior can be attributed to a strong microstructural strain rate-sensitivity at
high strain rates. Both Figs. 1(a) and 1(b) indicate the present model is able of accounting for
the flow stress upturn strain rates within 103 − 104 s−1, and it fits well with data of Tanner and
McDowell (1999). In addition, Fig. 1(b) also indicates the model description are in qualitative
agreement with experiments of Jordan et al. (2013). The discrepancy between experiments of
Tanner and McDowell (1999) and of Jordan et al. (2013), observed at low strain rates, can be
due to different initial grain sizes and to inertia effects associated with specimen sizes (Jordan
et al., 2013).

3 NUMERICAL FORMULATION

This section outlines the return mapping algorithm used in the resolution of the local equa-
tions. A standard finite strain elastic predictor-plastic corrector algorithm (Eterovic and Bathe,
1990; Weber and Anand, 1990) is extended in order to accommodate strain-rate-hardening ef-
fects within the numerical formulation.

3.1 Elastic predictor-plastic corrector algorithm

The elastic prediction phase assumes a fully elastic deformation increment, in which

Ḟ
vp = 0 and α̇ = 0, (23)

consequently

F vptrial

n+1 = F vp
n and αtrialn+1 = αn. (24)

From these assumption, the trial elastic state is defined according to elastic deformation and
associated logarithmic strain

F etrial

n+1 = F n+1
(
F vptrial

n+1

)−1
→ Eetrial

n+1 = 1
2 ln

(
Cetrial

n+1

)
, (25)
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where Cetrial

n+1 =
(
F etrial

n+1

)T
F etrial

n+1 . By knowing Eetrial

n+1 , the trial-rotated Kirchhoff stress tensor

is computed from Eq. (4): τ̄ trialn+1 = τ̄ trialn+1

(
Eetrial

n+1

)
.

Return mapping step is required when f
(
τ̄ trialn+1 , A

trial
n+1

)
> 0. In this work, an implicit

exponential mapping is employed (Eterovic and Bathe, 1990; Weber and Anand, 1990), from
which discretization of the plastic flow Ḟ

vp = D̄
vp
F vp follows

F vp
n+1 = exp

(
∆λN τ̄n+1

)
F vp
n , (26)

where N τ̄n+1 = ∂fn+1
∂τ̄n+1

= τ̄D
n+1

‖τ̄D
n+1‖

. Equation (26) after some manipulations reduces to (Eterovic

and Bathe, 1990; Weber and Anand, 1990)

Ee
n+1 = Eetrial

n+1 −∆λN τ̄n+1 . (27)

It is worth mentioning that when the constitutive formulation is restricted to elastic and inelastic
isotropy, equivalence of Eqs. (26) and (27) is exact. Otherwise, passage is an approximation
based on moderately small elastic deformation with a second-order error on elastic strains.
These conditions are needed in order to obtain the relation Re

n+1 = Retrial

n+1 , where Re =
F eU e−1

is the elastic right rotation tensor, and U e2 = F eT

F e (Eterovic and Bathe, 1990;
Weber and Anand, 1990).

Accumulated viscoplastic strain evolution, introduced in Eq. (11), is integrated following
a backward Euler method,

εn+1 = εn +
√

2
3∆λ. (28)

In the last equation, multiplier ∆λ must satisfy

f (τ̄ n+1, An+1) = Θ̄−1 (∆λ,An+1) , (29)

where Θ̄−1 is the inverse function of Θ̄ in terms of fn+1 and ∆λ. Function Θ̄ is the algorithmic
version of Θ given in Eq. (17). To compute the hardening evolution considering Eqs. (10) and
(9), a constant rate ε̇ ≈ εn+1−εn

∆t is assumed within time step (tn, tn+1]. Then, Eq. (13) can be
used considering tn as the initial state and tn+1 as the current time, what yields

An+1 = An + A∞n+1c∆εn+1 +
[
A∞n+1 (1 + cεn)− An

]
[1− exp (−δ∆εn+1)] , (30)

where ∆εn+1 = εn+1 − εn, and by virtue of Eq. (15)

A∞n+1 = (1− βn+1)Alwr∞ + βn+1A
up
∞ , (31)

with (see Eq. (16))

βn+1 =
[

1
∆t

(
εn+1 − εn −∆tε̇lwr

ε̇up − ε̇lwr

)]ξ
. (32)

The return mapping algorithm consists therefore in determining the solution to nonlinear
system of equations (27)-(32) with respect to the set of unknowns

{
Ee
n+1, εn+1, ∆λ, An+1,

A∞n+1 ,βn+1}. However, equality N τ̄n+1 = N τ̄ trial
n+1

can be established in the context of von
Mises criterion stated in Eq. (6). Equations (27)-(28) thus reduce to the single scalar equation:∥∥∥τ̄Dtrial

n+1

∥∥∥−∆λ2µ−
√

2
3 (σy + An+1) = Θ̄−1 (∆λ,An+1) , (33)
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with unknowns ∆λ and An+1. Furthermore, inserting Eq. (28) into Eq. (30) yields

An+1 = An + A∞n+1c

√
2
3∆λ+

[
A∞n+1 (1 + cεn)− An

] 1− exp
−δ

√
2
3∆λ

 , (34)

while substituting Eqs. (28) and (32) into Eq. (31) gives

A∞n+1 = Alwr∞ +
 1

∆t


√

2
3∆λ−∆tε̇lwr
ε̇up − ε̇lwr

ξ (Aup∞ − Alwr∞ )
. (35)

Then, the reduced return mapping algorithm consists in solving Eqs. (33)-(35) with respect to
∆λ, An+1 and A∞n+1 . Derivatives of Eqs. (33)-(35) with respect to unknowns {∆λ, An+1,

A∞n+1

}
, as well as, the derivation of an analytical consistent tangent modulus can be found in

(dos Santos et al., 2016a).

4 NUMERICAL EXAMPLES

This section is intended to assess the capabilities associated with the present model in
accounting for high strain rate effects on material response: namely strain, strain rate hardening
and viscous effects. By means of numerical simulations, local material response considering
uniaxial tension/compression loading is analyzed. That is done by prescribing the value of
axial strain E11 and associated strain rate D̄11. The material is elastic-viscoplastic and the
corresponding material parameters are those given in Tab. 1, which were obtained by dos Santos
et al. (2016b) considering available experiments related to an annealed OFHC copper (Tanner
and McDowell, 1999; Nemat-Nasser and Li, 1998; Jordan et al., 2013). Classical relationships
relate the Young modulus E and Poisson ratio ν appearing in Tab. 1 with elastic coefficients µ
and κ of Eq. (4) through µ = E

2(1+ν) and κ = E
3(1−2ν) .

4.1 Decremental strain rate test

In a decremental strain rate testing, material is subjected to a monotonic high loading with
a given high strain rate D̄111 , which is then abruptly decreased to a value D̄112 . Strain rate hard-
ening phenomenon is evidenced when the decremental response is compared to that obtained
during a constant strain rate

(
D̄11 = D̄112

)
monotonic loading. In order to simulate this test,

subsequent analysis considers two load conditions (employed in experiments performed by Tan-
ner and McDowell (1999)): (i) a quasi-static test (Q-S), in which the material is subjected to a
total strain equal to 92% imposed very slowly with D̄11 = 4×10−4 s−1; (ii) a decremental strain
rate test (DSR), where the material is subjected to at a high strain rate of D̄111 = 6 × 103 s−1

until a partial strain of 32% is reached, and then the strain rate is abruptly changed to a lower
value D̄112 = 4× 10−4 s−1 while strain reaches 79%.

Numerical analyzes were performed considering a local convergence tolerance equal to
10−6, 92 time steps3 for Q-S simulation and 78 for the DSR case. Numerical results are showed
in Figs. 2(a) and (b), which demonstrate the strain rate hardening effects on material response.
A good agreement between model prediction and experimental results is observed in Fig. 2(a),
where theoretical stress-strain curves for Q-S and DSR results are compared with experiments

3Numbers of time steps are equal to number of experimental points.
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Figure 2: Decremental strain rate test results: (a) Model-predicted stress-strain curves compared with
experimental data of Tanner and McDowell (1999); (b) Stress hardening vs. accumulated viscoplastic strain
curves.

of Tanner and McDowell (1999). A sharp flow stress decreasing is observed when the strain
rate changes instantaneously from D̄111 = 6 × 103 s−1 to D̄112 = 4 × 10−4 s−1. This behavior
evidences the instantaneous rate-sensitivity associated with viscous deformation mechanisms.
In contrast, no jump is observed in hardening response as illustrated by Fig. 2(b). This feature
could be expected, once the hardening response is related to current microstructural state, which
does not undergo an instantaneous change by abruptly shifting the imposed strain rate (see, e.g.,
Klepaczko (1975) and Rashid et al. (1992)). Moreover, both stress and hardening responses
of DSR simulation show an asymptotic tendency to the monotonic loading curve Q-S, what
is the resulting strain rate history effect, not only on hardening, but also on the flow stress
response. A higher previous strain rate induces a larger hardening when compared to a lower
strain rate imposed during the whole deformation process. This behavior can be attributed to
strong microstructural rate-dependence associated with FCC metals (Klepaczko, 1975; Chiem
and Duffy, 1983; Klepaczko and Chiem, 1986; Rashid et al., 1992). Reasoning on modeling
aspects, the present formulation is able of capturing stain-rate-induced hardening by means of
the rate-sensitivity attributed to the saturation parameter A∞ (see Eq. (15)).

Table 2: Loading strain rates of stress relaxation testing.

Q-S Case 1 Case 2 Case 3

D̄11 [s−1] 4× 10−4 103 6× 103 9× 103

4.2 Constant strain rate loading and stress relaxation testing

Strain rate hardening can also be characterized from stress relaxation testing, where the ob-
tained equilibrium state reflects the current microstructural configuration. Therefore, the strain
rate history effects on material state can be evaluated by varying the loading rate preceding
stress relaxation, and thus observing the equilibrium stress states reached asymptotically. A
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constitutive model capable of accounting for strain rate history effects should be able of pre-
dicting the distinct equilibrium stress states reached after different previous loading rates. For
this purpose, numerical simulations of stress relaxation tests are undertaken using the present
viscoplastic formulation.
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Figure 3: (a) Strain rate effects on stress-strain curves: comparison of model prediction and experiments
of Tanner and McDowell (1999) (Q-S and Case 2) and Jordan et al. (2013) (Case 3); (b) Strain rate history
effect on hardening curves; (c) Strain rate history effect on stress relaxation.

The numerical analyzes are carried out prescribing a total strain equal to 100% at different
strain rates (see Tab. 2) and then keeping it constant along time. The material properties are
those given in Tab. 1. All analyzes were performed considering 200 time steps and a local
convergence tolerance equal to 10−6. The stress-strain curves obtained for loading and stress
relaxation simulations are showed in Fig. 3(a). In this figure, Q-S, Case 2 and Case 3 results
are compared with experiments showing a good agreement. As expected, the flow stress is
an increasing function of strain rate. This effect could readily be predicted by a conventional
viscoplastic model that accounts only for instantaneous rate-sensitivity. However, the proposed
constitutive model is also capable to predict the hardening rate-sensitivity.

Here, the hardening variable A increases with rate ε̇, as emphasized in Fig. 3(b). But, the
strain rate influence on hardening becomes more pronounced only for strain rates exceeding
103 s−1. That is, up to a strain rate of 103 s−1 (Q-S and Case 1) hardening responses are practi-
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cally rate-independent, and for strain rates greater than 103 s−1 (Case 2 and Case 3) the effect
of previous loading rate on hardening variable A becomes significant. The rate dependence of
A can also be clearly evidenced in Fig. 3(c)4, where the relaxation response tends toward an
asymptotic equilibrium stress state, which is given by the strength (σy + A) associated with
each previous loading rate. In Fig. 3(c), the curve associated with Case 1 curve reaches the Q-S
response asymptotically, demonstrating that the difference between the Q-S and Case 1 results
observed in Fig. 3(a) is mainly due to instantaneous rate-sensitivity. On the other hand, the
equilibrium stress state (σy + A) is significantly increased by strain rate for values exceeding
103 s−1.

5 CONCLUSIONS

Continuum and numerical viscoplastic formulations to model macroscopic strain rate his-
tory effects were formulated. Constitutive capabilities associated with present approach were
assessed by means of homogeneous decremental strain rate and constant strain rate loading
followed by stress relaxation testing. Numerical results have demonstrated the model aptitude
to properly describe the main features of high strain rate loading on viscoplastic material re-
sponse. In general, numerical results obtained in this paper, demonstrating good correlation
with experimental data, contribute to the understanding of high velocity deformation processes
and encourage future researches on the high strain rate behavior of metallic materials.
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