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Abstract. Cell stresses have a key role on the tumor growth rate, the evolution pattern and
on ECM synthesis and organization. In this work, we investigate the interplay between these
complex biological phenomena. We develop a heterogeneous tumor growth model subjected to
elastic deformation and matrix degradation and remodeling. We incorporate mechanical ef-
fects of the surrounding tissue on the growing tumor by assuming that the stress components
must satisfy the conservation of linear momentum disregarding inertial effects. We investigate
tumor differentiation, morphogenic evolution, and invasion through different feedback mecha-
nism models. Numerical simulations are performed to highlight how mechanical properties of
a tissue contribute to cancer progression.
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INTRODUCTION

Tumor environment is composed of different types of cells embedded in the extracellular
matrix (ECM), linked by a variety of signal transduction. The cancer progression and invasion
is a complex process involving an intricate interplay of a numerous signaling pathways, cell-
cell and cell-microenvironment mechanical/chemical interactions. In order to grow, the tumor
cells need to remodel their environment by interacting with the ECM and promoting the growth
of new blood vessels as new source of nutrients. The interactions with the ECM include its
degradation in order to facilitate tumor cells mobility and its regeneration in order to serve as
a support to cells movement. The degradation and regeneration of the ECM are regulated by a
large family of proteolytic enzymes called metalloproteinases (MMPs), whose members express
characteristics to either promote or suppress carcinogenesis. MMPs, or more generically, matrix
degrading enzymes (MDEs) are secreted by both tumor and normal cells and their functions
themselves are balanced by endogenous tissue inhibitors of metalloproteinases. In addition,
in order to grow the tumor must overcome the stresses imposed by the surrounding matrix
environment as well as the solid stress generated by cellular growth and remodeling. Thus,
cell stresses have a key role not only on the tumor growth rate and growth pattern but also on
ECM synthesis and organization. It is known that the compressive stress from the environment
acting on tumor cells can cause an increase in the apoptosis rate and a decrease in the tumor
proliferation (Cheng et al. , 2009; Stylianopoulos et al. , 2012), although the precise feedback
mechanism remains obscure. Aiming to include and investigate the interplay for these complex
biological phenomena, we develop a reaction-diffusion tumor growth model that it is subjected
to elastic deformation and matrix degradation and remodeling due to MMPs.

Beginning with the model developed in Resende (2016), which extends the basic model
derived in Hinow et al. (2009); Souza (2013), we first determine the set of influential parameters
with respect to the tumor volume evolution. This knowledge makes possible to identify many
interesting model properties as well as to how the model might be improved. We then enhance
the model by including MDEs, ECM remodeling and mechanical deformation to then evaluate
how those new features affect tumor growth evolution.

MATHEMATICAL MODEL

The baseline model considered here is based on the continuum model developed in refer-
ences Hinow et al. (2009); Souza (2013), built on mass conservation principles. It consists of
seven nonlinear coupled partial differential equations that govern normoxic (proliferative) (n),
hypoxic (h) and apoptotic (a) tumor cell densities, extracellular matrix (f ) (ECM) and en-
dothelial cells (m) densities, oxygen (w) and vascular endothelial growth factor (g) (VEGF)
concentrations. A more complex model derived later refines the ECM sub-model by including
matrix degrading enzymes (p) (MDEs) and matrix remodeling. Summarizing, the nondimen-
sional model defined in Ω × (0, τmax] is given by the following set of seven coupled partial
differential equations:
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∂w

∂t
= ∇ · (Dw∇w) + αwm(1− w)− βw(n+ h+m)w − γww;

∂n

∂t
= ∇ · (Dn(max{n− νc, 0}+ 1)∇n)−∇ · (nχn∇f) + αnnmax{1− v, 0}

− αhH(ωh − w)n+ hnαhH(w − ωh)h ;

∂h

∂t
= ∇ · (Dh∇h)− hnαhH(w − ωh)h + αhH(ωh − w)n− βhH(ωa − w)h;

∂a

∂t
= ∇ · (Da∇a) + βhH(ωa − w)h;

∂m

∂t
= ∇ · (Dm∇m)− ∇ · (mχm∇g) + αmmgmax{1− v, 0};

∂g

∂t
= ∇ · (Dg∇g) + αghmax{1− g, 0} − βgmg;

df

dt
= −βfnf,

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

(1g)

in which v(x, t) = n(x, t) + h(x, t) + a(x, t) + m(x, t) + f(x, t). The highlighted terms
indicate modifications we performed in the original model developed in Hinow et al. (2009);
Souza (2013). Thus, the baseline model used in our analysis encompasses both avascular and
vascular phases of the tumor development. The oxygen concentration is considered the only
source of nutrients for cell viability, and ωh and ωa represent the oxygen concentrations below
which the cell becomes hypoxic and apoptotic, respectively. Phenotypic changes are captured
by the Heaviside function H. Tumor-associated angiogenesis is trigged by the VEGF secreted
by hypoxic cells, which drives the growth of endothelial cells. Finally, all variables diffuse
randomly through the domain, except for the ECM, which is degraded by the normoxic cells
invasion. The meaning of all parameters of (1) is described in Table 1.

Table 1: Nondimensional parameter vector (X) for the original one-dimensional model (1).

X Value Meaning X Value Meaning

Dw 0.58 nutrient diffusion coeff. βw 0.57 oxygen consumption rate

Dn 5.8× 10−5 normoxic cells diffusion coeff. βh 0.32 transfer rate from h to a

Dh 1.0× 10−5 hypoxic cells diffusion coeff. βf 0.5 rate of ECM degradation

Da 1.0× 10−6 apoptotic cells diffusion coeff. βg 5.0 VEGF consumption rate

Dm 5.8× 10−5 endothelial cells diffusion coeff. ωh 0.4 threshold n to h

Dg 0.02 VEGF diffusion coeff. ωa 0.3 threshold h to a

αw 1.0 rate of oxygen growth χn 1.4× 10−4 haptotactic constant (n)

αn log2 rate of normoxic cells prolif. χm 2.1× 10−6 haptotactic constant (m)

αh 1.6 transfer rate from n to h γw 0.025 oxygen decay rate

αm 0.7 rate of endothelial cells growth νc 0.8 crowding constant

αg 10.0 rate of growth of VEGF hn 0.1 % transfer rate from h to n
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We develop a stabilized finite element method for solving (1). The details on model solution
and numerical methodology are presented in Resende (2016).

SENSITIVITY ANALYSIS
We now assume that the d = 22 model parameters are uncertain, each one following a

continuous uniform distribution U(0.8X̄i, 1.2X̄i), in which X̄i is the average value of Xi listed
in Table 1. We investigate how those uncertainties affect the tumor volume Y (X) at given
time at which a central core of apoptotic cells is completely developed. For an appropriate set
of initial condition and boundary conditions, the sensitivity analysis is performed for a one-
dimensional problem.

We first use the simple and informative scatterplots method (Saltelli et al. , 2008). We
sampled 800 sets of X through a Monte Carlo approach and carried out a SA. The scatterplot
patterns shown in Fig. 1 reveal the most important parameters of the model, although do not
rank them in the order of importance. This is accomplished by using the elementary effects
(EEs) method (Morris, 1991; Saltelli et al. , 2008). EEs is a screening method that provides
two SA measures: the average (µ∗

i = 1/r
∑r

j=1 |EE
j
i |) and the standard deviation σi for each

ith parameter, that assess its overall importance and nonlinear interactions, respectively. The
parametric space is screened through r trajectories of (d + 1) points, each one providing d
elementary effects for a total of r(d+1) sample points. Beginning with a base vector, randomly
sampled in a p-level grid, the trajectory points are built by increasing one component by ∆ so
that two consecutive points differ in only one component (Saltelli et al. , 2008). Thus, the ith
EE is given by:

EEi =
Y (X1, . . . , Xi + ∆, . . . , Xd)− Y (X)

∆
=
Y (X + ei∆)− Y (X)

∆
. (2)

The implementation details are described in Resende (2016). Figure 2 shows the global SA
measures that allow to identify the set {Dn, ωa, βw, βf , αn, Dw} of the most influential param-
eters and their order of importance. Remark that the same set of parameters was identified by
the scatterplots approach (Fig. 1). In summary, this analysis points out three major features that
play crucial roles on the tumor volume evolution:

• Nutrient availability: nutrient uptake and dispersion;

• Tumor cell viability: cell proliferation and dispersion;

• ECM organization.

On the other hand, we may also assume that we might simplify the model by disregarding
the non-influential terms characterized by the non-influential parameters pointed out by the SA.
They are: (i) the natural oxygen decay; (ii) the increase of the oxygen diffusion coefficient to
avoid crowding; (iii) the haptotactic movement of normoxic cells towards ECM’s gradient; (iv)
the chemotactic movement of endothelial cells towards VEGF’s gradient. Unexpectedly, the
parameters associated with the angiogenesis were deemed unimportant, which could indicate a
major model flaw. This behavior might be due to the fact that there is no explicit interspecific
competition between normal and tumor cells, known for playing important role in the angio-
genesis process. This issue will be the focus of further investigation. From now, we want to
focus on developing a hierarchical family of model based on the information provided by the
SA, focusing on model enhancement with respect to tumor proliferation and ECM structure.
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Figure 1: Scatterplots of tumor volume versus the most important parameters of our baseline model (1).
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Figure 2: Left: global EEs measures for our baseline model (1) using p = 4 and r = 50. Right: µ∗
i with

respect to the number of trajectories r, with higher µ∗
i indicating a more important parameter.

HIERARCHICAL FAMILY OF TUMOR GROWTH MODELS

We expect to guarantee that all models in the family have at least the same set of important
parameters of the original model. In this way, the hierarchical family of models satisfies the
following hypotheses:

(a) The medium is heterogeneous;

(b) Angiogenesis is triggered during the tumor evolution thus implying that tumor cells undergo
different phenotypic stages;

(c) Normoxic cells proliferate at rate αn;

(d) The transitions between cell stages mainly depend on the threshold ωa (and so on ωh);
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(e) The oxygen transport depends on the diffusion coefficient Dw and oxygen uptake rate βw;

(f) Tumor evolution depends on the extracellular matrix degradation (βf ) and on normoxic
cells motility (Dn).

Let us now consider two new models of the family. The first one is obtained by disregarding
some of the non-influential phenomena pointed out by the SA, i.e., dropping the following terms
of (1): (i) the natural oxygen decay; (ii) the increase of the oxygen diffusion coefficient to avoid
crowding; (iii) the haptotactic movement of normoxic cells towards ECM’s gradient; (iv) the
chemotactic movement of endothelial cells towards VEGF’s gradient. It is worth mentioning
that some terms related to parameters not identified as important by the SA, as αw and hn, for
example, are kept due to the general issues defined previously. More specifically, αw and hn
play important roles in angiogenesis and on the transitions between cell stages, respectively, so
that they can not be disregarded. This new model is mathematically described by the following
system of equations:



∂w

∂t
= ∇ · (Dw∇w) + αwm(1− w)− βw(n+ h+m)w;

∂n

∂t
= ∇ · (Dn∇n) + αnnmax{1− v, 0} − αhH(ωh − w)n+ hnαhH(w − ωh)h;

∂h

∂t
= ∇ · (Dh∇h)− hnαhH(w − ωh)h+ αhH(ωh − w)n− βhH(ωa − w)h;

∂a

∂t
= ∇ · (Da∇a) + βhH(ωa − w)h;

∂m

∂t
= ∇ · (Dm∇m) + αmmgmax{1− v, 0};

∂g

∂t
= ∇ · (Dg∇g) + αghmax{1− g, 0} − βgmg;

df

dt
= −βfnf.

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

(3g)

The sensitivity analysis showed that ECM degradation plays an important role on tumor
evolution. Actually, tumor invasion is a process that involves degradation of a preexisting local
connective tissue (Madsen & Bugge, 2015). Recent studies have shown that some extracellular
matrix degrading enzymes (MDEs), such as matrix metalloproteinases (MMPs), are key reg-
ulators on cancer development and progression. Thus, we enhance the ECM’s sub-model by
considering the role of MMPs. We assume that MDEs dynamics are soluble so that they are
transported in the domain through diffusion. MDEs present a natural decay and we consider
that they are produced by normoxic cells up to a maximum concentration pmax in the microen-
vironment (Oden et al. , 2015). MDEs produced by normoxic cells are now responsible for
ECM degradation. Another new feature of the enhanced model is the ECM remodeling by tu-
mor cells if there is enough space in the microenvironment. Thus, this new model is described
by the following system of equations:

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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∂w

∂t
= ∇ · (Dw∇w) + αwm(1− w)− βw(n+ h+m)w;

∂n

∂t
= ∇ · (Dn∇n) + αnnmax{1− v, 0} − αhH(ωh − w)n+ hnαhH(w − ωh)h;

∂h

∂t
= ∇ · (Dh∇h)− hnαhH(w − ωh)h+ αhH(ωh − w)n− βhH(ωa − w)h;

∂a

∂t
= ∇ · (Da∇a) + βhH(ωa − w)h;

∂m

∂t
= ∇ · (Dm∇m) + αmmgmax{1− v, 0};

∂g

∂t
= ∇ · (Dg∇g) + αghmax{1− g, 0} − βgmg;

∂p

∂t
= ∇ · (Dp∇p) + αpn(1− p)− βpp− βfpf ;

df

dt
= −βfpf + αfnmax{1− v, 0}.

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(4g)

(4h)

The new parameters are listed in Table 2. As indicated in Resende (2016), the SA per-
formed to these two new models indicate that the same set of important parameters remains
indeed the same. We emphasize that the modeling framework in this manner provides a power-
ful way for studying a model itself or either its simplification or extension. The framework can
also be tailored to form the basis for future models, incorporating new processes and phenom-
ena.

Table 2: Nondimensional parameters for the enhanced one-dimensional model (1).

Parameter Value Meaning

Dp 0.1 MDE diffusion coefficient

αp 7.0 rate of MDE production by proliferative cells

αf 0.3 rate of ECM regeneration

βp 10.0 MDE natural decay

βf 1.0 rate of ECM degradation

CANCER MECHANICS
Tumor micro-environment is highly heterogeneous, composed of different types of cells

embedded in the ECM. In order to grow, cancer cells must overcome the stresses imposed by
the surrounding matrix environment as well as the solid stress generated by cellular growth
and remodeling. To define the deformation model we first introduce the displacement field,
denoted by u, and we assume a small infinitesimal displacement regime. This implies that the
deformation (strain) tensor is given by:

ε =
1

2

(
∇u + ∇ut

)
, (5)
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which may be split into the form:

ε = εs + εg. (6)

Here, the mechanical counterpart of strain due to applied stress is denoted by εs and εg stands
for the stress-free strain due to growth. Denoting φ = n+ h+ a as the total tumor cell density,
we define the linear elastic inhomogeneous material tensor as:

C(φ) = Ch + g(φ)
(
Ct − Ch

)
. (7)

The function g(φ) is an interpolation function that allows C(φ) to vary smoothly across the
interface from the healthy tissue (Ch) to the tumor tissue (Ct). To this end, g(φ) satisfies
g(φ = 1) = 1 in regions where there are only tumor cells, and g(φ = 0) = 0 elsewhere
(Tsukada et al. , 2009; Wise et al. , 2008). The strain energy density may now be defined by:

W =
1

2
ε : C(φ)ε + ε : σ(φ), (8)

in which σ(φ) is a symmetric compositional stress tensor associated with the tumor growth.
Assuming that the diffusion mechanism occurs on a time scale much larger than that associated
with inertia, we may consider a quasi-static approximation for the linear momentum balance.
Using Eq. (8) and assuming no body forces and no additional momentum supplied, the equilib-
rium equation is simply given by:

∇ · (C(φ)ε + σ(φ)) = 0. (9)

For this preliminary study on the tumor mechanical effects, we assume a linear isotropic com-
positional stress of the form:

σ(φ) = λnI, (10)

in which I is the identity tensor and λ depends on the tumor proliferative growth rate. Thus,
rewriting Eq. (9) in terms of the displacement vector u, we obtain:

1

2
∇ ·

[
C(φ)

(
∇u + ∇ut

)]
= −λ∇n. (11)

A noteworthy simplification happens by assuming that the tumor microenvironment is isotropic
and homogeneous so that Hooke’s law holds (Weis et al. , 2013). Defining the Poisson’s ratio ν,
the Young’s modulus E, and the shear modulus G = E/(2(1 + ν)), the equilibrium may be
written as:

0 = ∇ · (G∇u) + ∇ G

1− 2ν
(∇ · u) + λ∇n. (12)

The progressive accumulation of compressive stresses inside the tumor as it grows has a
huge impact on cell behavior and on the whole microenvironment. According to the experimen-
tal studies performed by Cheng et al. (2009); Stylianopoulos et al. (2012), the accumulation of
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compressive stresses inside tumors inhibits tumor growth and changes the tumor growth pattern.
Here, we investigate the effects of compressive stresses on the tumor proliferative growth rate
and normoxic cell diffusion coefficient by introducing a negative feedback control following
the work developed by Weis et al. , 2013. By defining a scaling constant γ and the Von Mises
stress σvm, the control mechanism is modeled by an exponential damping factor Dfac given by:

Dfac = e−γσvm . (13)

This damping factor modulates either the tumor proliferative growth rate or the normoxic cell
diffusion coefficient such that they become the heterogeneous parameters given by:

D̄n = Dfac Dn = Dne
−γσvm and ᾱn = Dfac αn = αne

−γσvm . (14)

In the following, we solve the 2D coupled model under the previous equilibrium ap-
proximation in order to investigate tumor differentiation, morphogenic evolution, and invasion
through the two different feedback mechanism models given by Eq. (14) using the parameters
defined in Table 3.

Table 3: Parameters for the simulation of the two-dimensional model (1) with mechanical coupling.
Parameter Value Meaning

E 2.0 kPa Young’s Modulus
G 0.69 kPa Shear Modulus
ν 0.45 Poisson’s Rate
γ 2.0× 10−5 kPa−1 Mechanical Coupling Coefficient
λ 2.0× 10−5 Scaling Constant

NUMERICAL SIMULATION
In the preliminary simulations that we present here, we consider the most complete model

of the hierarchical family described previously, with and without considering mechanical defor-
mation. We consider a two-dimensional computational domain Ω = (0, 3)× (0, 3) in which the
nutrient is assumed to be w(x, 0) = 1.0. The initial condition for normoxic cells is assumed to
be of the following circular shape:{

(x, y) :
(x− 1.5)2

0.01
+

(y − 1.5)2

0.01
≤ 1.0

}
.

We assume that there is no hypoxic cells initially as well as VEGF concentration, and basal
values for apoptotic and endothelial cells are stated over the domain Ω: a(x, 0) = 5 × 10−2;
m(x, 0) = 1× 10−2. Thus, the ECM density in the microenvironment is given by:

f(x, 0) = 1.0− n(x, 0)− h(x, 0)− a(x, 0)−m(x, 0); (15)
= 1.0− n(x, 0)− 0.06.

The dynamics is completely described by defining the following Dirichlet and homogeneous
Neumann conditions:

∇n · n = ∇h · n = ∇a · n = 0;

∇m · n = ∇f · n = ∇g · n = 0;

w(x, t) = 1;

 on Γ× (0, τmax] , (16)
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where n is a unit exterior normal vector on Γ. These conditions indicate that a constant nutrient
supply is stated on the boundary of the domain and no mass flux is allowed. For spatial and
temporal accuracy, we use a quadrilateral mesh with 16 × 104 uniform elements (400 × 400)
and a constant time step size (∆t = 0.1). As these 2D numerical experiments demand high
computational power, we use the C++ libMesh library to take advantage of parallel features.

Figure 3 show the tumor evolution at t = 350 without the mechanical deformation feedback
on the tumor growth. As normoxic cells grow in size and ECM is degraded and remodeled, the
oxygen concentration gradually decreases towards the center of the tumor. The onset of hypoxic
cells takes place when w < ωh, promoting the growth of a new vascular network around the
proliferative rim. Even with the appearance of endothelial cells, the nutrient supply remains
insufficient to maintain quiescent tumor cells in the middle of the tumor, yielding the onset
of apoptotic cells in this region of the microenvironment, where oxygen concentration drops
below ωa.

Figure 3: Two-dimensional experiment (original model) at t = 350.
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We perform the same experiment including the mechanical deformation feedback on the
diffusion coefficient. Because of the choices used for λ and γ, the snapshots of the variables
evolution at t = 350 are almost indistinguishable from those depicted in Fig. 3. Figure 4
shows the evolution of the x-component of the displacement field at y = 0. The results are
similar to those presented in Garg & Miga (2008) at early times. As time evolves, we notice
a displacement pattern disruption caused by the onset of hypoxic cells. This is explained by
the fact that in the present model tumor cells are differentiated into proliferative, hypoxic and
apoptotic, and only normoxic cells induce growth.
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Figure 4: The x-component of the displacement field u for different time steps.

CONCLUSION
In this work we focus on the development of a family of hierarchical deterministic tumor

growth model capable of capturing both avascular and vascular phases of cancer as well as the
mechanical effects promoted by the tumor growth. Beginning with a baseline vascular model,
the impact of parameter uncertainty is assessed by performing SAs through scatterplots and ele-
mentary effects techniques. Both were able to identify the set of the most influential parameters
with respect to the evolution of the tumor volume. We showed that our overarching hypothesis
that a model-building framework may be systematically developed by defining essential model
hypotheses and a set of influential parameters, is indeed valid. Some preliminary experiments
have showed the interplay between compressive stresses accumulation and the feedback con-
trol on the diffusion coefficient. More experiments are needed to verify the ranges of scale
parameters in the deformation model as well as to compare the two different feedback models.
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thesis, Laboratório Nacional de Computação Cientı́fica (LNCC/MCTI), Petrópolis/RJ, Brazil.
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