Radiação Cósmica de Fundo em Micro-ondas
DOI:
https://doi.org/10.26512/2446-564X2016e13354Palavras-chave:
Cosmologia, Radiação Cósmica de Fundo, Anisotropias SecundáriasResumo
A detecção da radiação cósmica de fundo foi um dos marcos da era da Cosmologia de precisão. A partir de medidas de suas propriedades, pode-se extrair informações sobre as características do Universo ainda jovem e, em conjunto com outros dados, estabelecer o cenário cosmológico atual, conhecido como $\Lambda$CDM. Este artigo é destinado a discorrer sobre as principais propriedades cosmológicas desta observável além de expor algumas questões ainda em aberto.
Downloads
Referências
Tolman, C., Effect of inhomogeneity on cosmological models, Proceedings of the national academy of sciences of the United States of America, 20, 3, 169, 1934
Gamow,G., Expanding universe and the origin of elements, Physical Review, 70, 7-8, 572, 1946
Dicke, R. H., The measurement of thermal radiation at microwave frequencies, Review of Scientific Instruments, 17, 7, 268–275, 1946
Alpher, A. and Herman, R., Evolution of the Universe, Nature, 162, 774–775, 1948
Gamow, G., The physics of the expanding universe, Vistas in Astronomy, 2, 1726–1732, 1956
McKellar, A., Evidence for the molecular origin of some hitherto unidentified interstellar lines, Publications of the Astronomical Society of the Pacific, 187–192, 1940
Adams, W. S., Some Results with the COUDÉ Spectrograph of the Mount Wilson Observatory, The Astrophysical Journal, 93, 11, 1941
Penzias, A. A, Wilson, R. W., A Measurement of Excess Antenna Temperature at 4080 Mc/s., The Astrophysical Journal, 142, 419–421, 1965
Dicke, H., Peebles, P. J., Roll, P. G, Wilkinson, D., Cosmic Black-Body Radiation, The Astrophysical Journal, 142, 414–419, 1965
Roll, P., Wilkinson, D., Cosmic background radiation at 3.2 cm-support for cosmic black-body radiation, Physical Review Letters, 16, 10, 405, 1966
Peebles, P.,J., Page, L., Partridge, R., Book Review: Finding the Big Bang, Journal for the History of Astronomy, 41, 137–138, 2010
Fixsen, D.,The temperature of the cosmic microwave background, The Astrophysical Journal, 707, 2, 916, 2009
Mather, J. et al., Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument, The Astrophysical Journal, 420, 439–444, 1994
Smoot, G., et al, Structure in the COBE differential microwave radiometer first-year maps, The Astrophysical Journal, 396, L1–L5, 1992
Sugiyama, N., Cosmic background anisotropies in CDM cosmology, arXiv preprint astro-ph/9412025, 1994
Smoot, G., Recurso Online, http://cosmos.lbl.gov/cobehome.html#firas, 2007, Acessado em: 2015-06-20
Ryden, B., Introduction to cosmology, 1, 191-199, 2003
Hu, W., Dodelson, S., Cosmic microwave background anisotropies, arXiv preprint astro-ph/0110414, 2001
Yoo, J., Watanabe, Y., Theoretical models of dark energy, International Journal of Modern Physics D, 21, 12, 1230002, 2012
Scott, D., Smoot, G., Cosmic microwave background mini-review, arXiv preprint arXiv:1005.0555, 2010
Zeldovich, Y., Sunyaev, R., The interaction of matter and radiation in a hot-model universe, Astrophysics and Space Science, 4, 3, 301–316, 1969
Ade, P., et al., Planck 2013 results. XIX. The integrated Sachs-Wolfe effect, Astronomy & Astrophysics, 571, A19, 2014
Kosowsky, A., The cosmic microwave background, arXiv preprint astro-ph/0102402, 2001
Ade, P.,et al,Planck 2013 results. XVI. Cosmological parameters, Astronomy & Astrophysics, 571, A16, 2014
Aubourg, É., et al., Cosmological implications of baryon acoustic oscillation (BAO) measurements, arXiv preprint arXiv:1411.1074, 2014
Liddle, A., An introduction to modern cosmology, 2015, 75-83, John Wiley & Sons
Vielva, P., Martínez-G., Detection of non-gaussianity in the Wilkinson microwave anisotropy probe first-year data using spherical wavelets, The Astrophysical Journal, 609, 1, 22, 2004
Bartolo, N., et al., Non-Gaussianity from inflation: theory and observations, Physics Reports, 402, 3, 103–266,2004
Guth, A., Inflationary universe: A possible solution to the horizon and flatness problems, Physical Review D, 23, 2, 347, 1981
Linde, A., A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Physics Letters B, 108, 6, 389–393, 1982
Sato, K., First-order phase transition of a vacuum and the expansion of the Universe, Monthly Notices of the Royal Astronomical Society, 195, 3, 467–479,1981
Matthias B., Schneider, P., Weak gravitational lensing, Physics Reports, 340, 4–5, 291 - 472, 2001
Wilkinson, D., Partridge, R., Large scale density inhomogeneities in the universe, Nature Publishing Group, 1967
Modest, H., et al., Scale-dependent non-Gaussianities in the CMB data identified with Minkowski functionals and scaling indices, Monthly Notices of the Royal Astronomical Society, 428, 1, 551–562, 2013
Ade, P., et al., Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity, Astronomy & Astrophysics, 571, A24, 2014
Verde, L., et al., Large-scale structure, the cosmic microwave background and primordial non-Gaussianity, Monthly Notices of the Royal Astronomical Society, 313, 1, 141–147, 2000
Bernardeau, F., Uzan, J., Inflationary models inducing non-Gaussian metric fluctuations, Physical Review D, 67, 12, 121301, 2003
Chen, X., et al., Large non-Gaussianities in single-field inflation, Journal of Cosmology and Astroparticle Physics, 2007, 06, 023, 2007
Bernui, A., et al., Deviation from Gaussianity in the cosmic microwave background temperature fluctuations, EPL (Europhysics Letters), 78, 1, 19001, 2007
Chiang, L., et al., Non-gaussianity of the derived maps from the first-year wilkinson microwave anisotropy probe data, The Astrophysical Journal Letters, 590, 2, L65, 2003
McEwen, J., et al., A high-significance detection of non-Gaussianity in the WMAP 5-yr data using directional spherical wavelets, Monthly Notices of the Royal Astronomical Society, 388, 2, 659–662, 2008
Yadav, A., Komatsu, E., Wandelt, B., Fast estimator of primordial non-Gaussianity from temperature and polarization anisotropies in the cosmic microwave background, The Astrophysical Journal, 664, 2, 680, 2007
Dalal, N., et al., Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects, Physical Review D, 77, 12, 123514, 2008
Bartolo, N., Matarrese, S., Riotto, A., Non-Gaussianity and the cosmic microwave background anisotropies, Advances in Astronomy, 2010,
Cabella, P., Kamionkowski, M., Theory of cosmic microwave background polarization, arXiv preprint astro-ph/0403392, 2004
Kosowsky, A., Cosmic microwave background polarization, arXiv preprint astro-ph/9501045, 1995
Ade, P., et al., Detection of B-mode polarization at degree angular scales by BICEP2, Physical Review Letters, 112, 24, 2014
Kovac, J., et al., Detection of polarization in the cosmic microwave background using DASI, Nature, 420, 6917, 772–787, 2002
Ade, P. et al., Joint analysis of BICEP2/Keck Array and Planck data, Physical review letters, 114, 10, 101301, 2015
Yuki D. T., Recursos Online: Caltech Observational Cosmology,http://bicep.caltech.edu/public/bicep_pubs.htm, 2002, Acessado em: 10-06-2015
Crittenden, R., Turok, N., Looking for a cosmological constant with the Rees-Sciama effect, Physical Review Letters, 76, 4, 575, 1996
Lewis, A., Challinor, A., Weak gravitational lensing of the CMB, Physics Reports, 429, 1, 1–65, 2006
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2016 Physicae Organum : Revista dos Estudantes de Física da Universidade de Brasília

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).

