Radiação Cósmica de Fundo em Micro-ondas

Autores

  • Gabriela Antunes Marques Observatório Nacional

DOI:

https://doi.org/10.26512/2446-564X2016e13354

Palavras-chave:

Cosmologia, Radiação Cósmica de Fundo, Anisotropias Secundárias

Resumo

A detecção da radiação cósmica de fundo foi um dos marcos da era da Cosmologia de precisão. A partir de medidas de suas propriedades, pode-se extrair informações sobre as características do Universo ainda jovem e, em conjunto com outros dados,  estabelecer o cenário cosmológico atual, conhecido como $\Lambda$CDM. Este artigo é destinado a discorrer sobre as principais propriedades cosmológicas desta observável além de expor algumas questões ainda em aberto.

Downloads

Não há dados estatísticos.

Referências

Tolman, C., Effect of inhomogeneity on cosmological models, Proceedings of the national academy of sciences of the United States of America, 20, 3, 169, 1934

Gamow,G., Expanding universe and the origin of elements, Physical Review, 70, 7-8, 572, 1946

Dicke, R. H., The measurement of thermal radiation at microwave frequencies, Review of Scientific Instruments, 17, 7, 268–275, 1946

Alpher, A. and Herman, R., Evolution of the Universe, Nature, 162, 774–775, 1948

Gamow, G., The physics of the expanding universe, Vistas in Astronomy, 2, 1726–1732, 1956

McKellar, A., Evidence for the molecular origin of some hitherto unidentified interstellar lines, Publications of the Astronomical Society of the Pacific, 187–192, 1940

Adams, W. S., Some Results with the COUDÉ Spectrograph of the Mount Wilson Observatory, The Astrophysical Journal, 93, 11, 1941

Penzias, A. A, Wilson, R. W., A Measurement of Excess Antenna Temperature at 4080 Mc/s., The Astrophysical Journal, 142, 419–421, 1965

Dicke, H., Peebles, P. J., Roll, P. G, Wilkinson, D., Cosmic Black-Body Radiation, The Astrophysical Journal, 142, 414–419, 1965

Roll, P., Wilkinson, D., Cosmic background radiation at 3.2 cm-support for cosmic black-body radiation, Physical Review Letters, 16, 10, 405, 1966

Peebles, P.,J., Page, L., Partridge, R., Book Review: Finding the Big Bang, Journal for the History of Astronomy, 41, 137–138, 2010

Fixsen, D.,The temperature of the cosmic microwave background, The Astrophysical Journal, 707, 2, 916, 2009

Mather, J. et al., Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument, The Astrophysical Journal, 420, 439–444, 1994

Smoot, G., et al, Structure in the COBE differential microwave radiometer first-year maps, The Astrophysical Journal, 396, L1–L5, 1992

Sugiyama, N., Cosmic background anisotropies in CDM cosmology, arXiv preprint astro-ph/9412025, 1994

Smoot, G., Recurso Online, http://cosmos.lbl.gov/cobehome.html#firas, 2007, Acessado em: 2015-06-20

Ryden, B., Introduction to cosmology, 1, 191-199, 2003

Hu, W., Dodelson, S., Cosmic microwave background anisotropies, arXiv preprint astro-ph/0110414, 2001

Yoo, J., Watanabe, Y., Theoretical models of dark energy, International Journal of Modern Physics D, 21, 12, 1230002, 2012

Scott, D., Smoot, G., Cosmic microwave background mini-review, arXiv preprint arXiv:1005.0555, 2010

Zeldovich, Y., Sunyaev, R., The interaction of matter and radiation in a hot-model universe, Astrophysics and Space Science, 4, 3, 301–316, 1969

Ade, P., et al., Planck 2013 results. XIX. The integrated Sachs-Wolfe effect, Astronomy & Astrophysics, 571, A19, 2014

Kosowsky, A., The cosmic microwave background, arXiv preprint astro-ph/0102402, 2001

Ade, P.,et al,Planck 2013 results. XVI. Cosmological parameters, Astronomy & Astrophysics, 571, A16, 2014

Aubourg, É., et al., Cosmological implications of baryon acoustic oscillation (BAO) measurements, arXiv preprint arXiv:1411.1074, 2014

Liddle, A., An introduction to modern cosmology, 2015, 75-83, John Wiley & Sons

Vielva, P., Martínez-G., Detection of non-gaussianity in the Wilkinson microwave anisotropy probe first-year data using spherical wavelets, The Astrophysical Journal, 609, 1, 22, 2004

Bartolo, N., et al., Non-Gaussianity from inflation: theory and observations, Physics Reports, 402, 3, 103–266,2004

Guth, A., Inflationary universe: A possible solution to the horizon and flatness problems, Physical Review D, 23, 2, 347, 1981

Linde, A., A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Physics Letters B, 108, 6, 389–393, 1982

Sato, K., First-order phase transition of a vacuum and the expansion of the Universe, Monthly Notices of the Royal Astronomical Society, 195, 3, 467–479,1981

Matthias B., Schneider, P., Weak gravitational lensing, Physics Reports, 340, 4–5, 291 - 472, 2001

Wilkinson, D., Partridge, R., Large scale density inhomogeneities in the universe, Nature Publishing Group, 1967

Modest, H., et al., Scale-dependent non-Gaussianities in the CMB data identified with Minkowski functionals and scaling indices, Monthly Notices of the Royal Astronomical Society, 428, 1, 551–562, 2013

Ade, P., et al., Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity, Astronomy & Astrophysics, 571, A24, 2014

Verde, L., et al., Large-scale structure, the cosmic microwave background and primordial non-Gaussianity, Monthly Notices of the Royal Astronomical Society, 313, 1, 141–147, 2000

Bernardeau, F., Uzan, J., Inflationary models inducing non-Gaussian metric fluctuations, Physical Review D, 67, 12, 121301, 2003

Chen, X., et al., Large non-Gaussianities in single-field inflation, Journal of Cosmology and Astroparticle Physics, 2007, 06, 023, 2007

Bernui, A., et al., Deviation from Gaussianity in the cosmic microwave background temperature fluctuations, EPL (Europhysics Letters), 78, 1, 19001, 2007

Chiang, L., et al., Non-gaussianity of the derived maps from the first-year wilkinson microwave anisotropy probe data, The Astrophysical Journal Letters, 590, 2, L65, 2003

McEwen, J., et al., A high-significance detection of non-Gaussianity in the WMAP 5-yr data using directional spherical wavelets, Monthly Notices of the Royal Astronomical Society, 388, 2, 659–662, 2008

Yadav, A., Komatsu, E., Wandelt, B., Fast estimator of primordial non-Gaussianity from temperature and polarization anisotropies in the cosmic microwave background, The Astrophysical Journal, 664, 2, 680, 2007

Dalal, N., et al., Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects, Physical Review D, 77, 12, 123514, 2008

Bartolo, N., Matarrese, S., Riotto, A., Non-Gaussianity and the cosmic microwave background anisotropies, Advances in Astronomy, 2010,

Cabella, P., Kamionkowski, M., Theory of cosmic microwave background polarization, arXiv preprint astro-ph/0403392, 2004

Kosowsky, A., Cosmic microwave background polarization, arXiv preprint astro-ph/9501045, 1995

Ade, P., et al., Detection of B-mode polarization at degree angular scales by BICEP2, Physical Review Letters, 112, 24, 2014

Kovac, J., et al., Detection of polarization in the cosmic microwave background using DASI, Nature, 420, 6917, 772–787, 2002

Ade, P. et al., Joint analysis of BICEP2/Keck Array and Planck data, Physical review letters, 114, 10, 101301, 2015

Yuki D. T., Recursos Online: Caltech Observational Cosmology,http://bicep.caltech.edu/public/bicep_pubs.htm, 2002, Acessado em: 10-06-2015

Crittenden, R., Turok, N., Looking for a cosmological constant with the Rees-Sciama effect, Physical Review Letters, 76, 4, 575, 1996

Lewis, A., Challinor, A., Weak gravitational lensing of the CMB, Physics Reports, 429, 1, 1–65, 2006

Downloads

Publicado

2016-03-28

Como Citar

Marques, G. A. (2016). Radiação Cósmica de Fundo em Micro-ondas. Physicae Organum, 2(1). https://doi.org/10.26512/2446-564X2016e13354

Edição

Seção

Artigos regulares