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Resumo

Neste trabalho estamos interessados em obter uma expressão geral para todos os termos
de uma expansão multipolar do potencial elétrico. Isso deve ser visto como mais do que um
simples exercício matemático, uma vez que muitos cálculos, principalmente aqueles relacionados a
sistemas eletrônicos em Mecânica Quântica, podem se beneficiar dos resultados aqui obtidos.

Primeiramente, no entanto, faremos uma breve introdução à expansão multipolar derivando a
expressão usual em termos dos polinômios de Legendre. Na seção seguinte, nós chegamos a uma
expressão geral para um multipolo qualquer. A seção três é focada em mostrar que tal expressão
se reduz aos casos simples dos multipolos comumente tratados (monopolo, dipolo, quadrupolo e
octopolo). Por fim, fazemos uma breve conclusão dos resultados e suas implicações.

Palavras-chave: Física. Eletrostática. Expansão Multipolar. Tensor de Multipolo.

Abstract

In this work we are interested in obtaining a general expression for all terms of a multipole
expansion of the electric potential1. This should be seen as more than a mathematical exercise,
since many calculations, mainly those in the realm of electronic systems in Quantum Mechanics,
can profit from the results to be shown.

Before anything, we will make a brief introduction to multipole expansion deriving the usual
expression in terms of the Legendre polynomials. In the next section we find the general expression
for any multipole term. Section three is devoted to the show that this general expression reduces
to the usually known multipole terms (monopole, dipole, quadrupole and octopole). We then make
a brief conclusion of our results and their implications.
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1This problem was suggested in a class on Electromagnetic Theory, at Universidade de Brasília, UnB, by
professor L.S.F. Olavo
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I. Introduction

Consider a continuous arbitrary charge distribution. If each infinitesimal charge element
is in figure a position given by the vector r′, as illustrated in figure 1,

Figure 1

the potential it attributes to a point defined by r is given by Gauss’s law as:

Φ(r) =
1

4πε0

∫
ρ(r′)

r
dv′, (1)

where ρ(r′) is the position dependent charge density, and r is the distance between the
charge element and the point where the potential is evaluated. By definition

r2 = |r|2 + |r′|2 − 2|r′||r|cosθ = r2
(

1 + t2 − 2tcosθ
)

, (2)

where t = |r′|
|r| , we have then

r = |r|
√

1 + t2 − 2tcosθ. (3)

Considering now that, by the definition of the generating function of the Legendre
polynomials

1√
1 + t2 − 2tx

=
∞

∑
n=0

Pn(x)tn, (4)

where Pn(x) are the Legendre polynomials, making x = cosθ we then have

Φ(r) =
1

4πε0

∞

∑
n=0

1
rn+1

∫
(r′)nPn(cosθ)ρ(r′)dv′. (5)

II. Multipole Tensor

Beginning with the Rodrigues’ formula for the Legendre polynomials

Pn(cos(θ)) = Pn(x) =
1

2nn!
dn[(x2 − 1)n]

dxn , (6)

2 Universidade de Brasília



Termo Tensorial Geral para Expansão Multipolar

we can find the following expression for the nth polynomial

Pn(x) =
1

2nn!

n/2

∑
k=0

Ckxn−2k, (7)

where we define

Ck = (−1)k
(

n
k

)
[2(n − k)]!
(n − 2k)!

. (8)

Considering the vector r′ associated with the position of each element of charge dq, we
can write down it’s components as

ri′ = |r′|ui′ , (9)

where we define, using Einstein index notation,

|r′|2 = ri′ri′ . (10)

As the modulus of the vector r′ and ui′ are the components of the unit vector parallel to
ri′ .

Since the space treated here is simply the continous 3-D Euclidean space we can define
its metric as follows.

ηij = ui ⊗ uj = uiuj, (11)

where ⊗ denotes the tensor product between the bases (which in here are the components
of ui in the adopted coordinate system), and ui is the 1-form associated with the unit vector
in the direction of ri, which is the position vector of the point in which the potential is
evaluated.

Since x was defined as the cosine between the position vector of the charge element and
ri, it can be written as2

x = uiui′ , (12)

we then have
n/2

∑
k=0

Ckxn−2k =
n/2

∑
k=0

(uiri′)nCkx−2k, (13)

and considering that
1
x
=

|r′|
uiri′ , (14)

it is possible to write 8 as

n/2

∑
k=0

(uiri′)nCkx−2k = ∑(uiri′)n−2k|r′|2k. (15)

2Although i and i′ are different symbols they denote components with respect to the same basis, the only
difference being one represents the components of the position vector of the point analyzed and other the
position of the charge element
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Using 5 and 6 we can deduce the following:

|r′|2 =ri′ri′ = riri = riuiηijη
ijrjuj

=uiririη
ijuj = ui|r′|2ηijuj,

(16)

Now, using (9), (10) and (11) we arrive at

∑Ckxn−2k = ∑Ck(uiri′)n−2k(ui|r′|2ηijuj)
k. (17)

Noting that
(ui)

n = ui1 ⊗ ... ⊗ uin , (18)

we can write the sum in (13) in terms of a tensor. Therefore defining the Generalized
Multipole Tensor

L = Li1...in ⊗ ui1 ... ⊗ uin , (19)

where the components

Li1...in =
(−1)k

2nn!

∫
ρ(r′)

n
2

∑
k=0

Ck(ri′)n−2k(|r′|2ηij)kdv′, (20)

are the nth term of the expansion and

(ηij)k = ηi1i2 ...ηik−1ik , (21)

with (15) and (16) we then can write down the general term for the potential expansion.

φ(r) =
1

4πε0

∞

∑
n=0

1
rn+1 Li1...in ei1 ...ein . (22)

III. Some Specific Cases

III.1. Monopole Potential

The derivation of the monopole contribution for the total potential is trivial. In this case
L is simply a scalar for which n = 0, we then have from (20) and (22).

φ0(r) =
1

4πε0r

∫
ρ(r′)dv′ =

Q
4πε0r

(23)

III.2. Dipole Potential

For the dipole we have n = 1, therefore L is a (1,0) tensor. We still have a single term in
the sum on (20). From (8) we have

C0

2nn!
=

2
2
= 1 (24)

4 Universidade de Brasília



Termo Tensorial Geral para Expansão Multipolar

and, from (20)

Li =
∫

ρ(r′)ri′dv′ = pi (25)

and therefore

φ1(r) =
1

4πε0r2 piei (26)

Where pi is the dipole momentum vector.

III.3. Quadrupole Potential

For this case we have something more interesting, this part of the contribution is a (2,0)
tensor field for which n=2, the coefficients Ck are.

C0 =

(
2
0

)
4!
2!

= 12 (27)

C1 =

(
2
1

)
2!
0!

= 4 (28)

Therefore, L takes the form

Lij =
1
2

∫
ρ(r′)

[
3ri′rj′ − (|r′|2ηij)

]
dv′ = Qij (29)

We then can write the potential as

φ2(r) =
1

4πε0r2 Qijeiej (30)

III.4. Octopole Potential

At last, the deduction of the octopole contribution is similar to the past ones. For this
case

C0 = 120, (31)

C1 = −72, (32)

Lijk =
1
2

∫
ρ(r′)

[
5ri′rj′rk′ − 3|r′|2ri′η jkdv′

]
, (33)

the potential is therefore

φ3(r) =
1

4πεr3 Lijkeiejek, (34)

reproducing, as expected, the tensors associated with such multipoles
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IV. Conclusions

In this paper we have shown how one can arrive at a general tensorial term that enables
a quick derivation of the nth order tensor associated with the 2nth multipole of a charge
distribution. This demonstration can be extended to any inverse square force law whose
potential can be obtained from the Legendre equation and, as expected, shows that such
multipoles fall at a rate proportional to dn, meaning that at short distances their influence
must be taken into account.
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