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Abstract

We study blowup (formation of finite-time singularity) in a shell model
for magnetohydrodynamic (MHD) turbulence, showing blowup for this
model and proving a criterion for it’s occurance. We introduce a renor-
malization scheme which takes blowup time to infinity and study some
basic properties of the renormalized model while proving it’s consistency.
Relation between the renormalized and original models is studied and we
propose a method of analysis for a special solution of the renormalized
model. Some numeric solutions of the models are shown.

1 Introduction

Blowup is defined as the formation of a singularity in an initially regular solu-
tion of the flow equations during a finite time.

Existence of blowup in a flow of incompressible ideal fluid lies in the forefront
of modern reseach in fluid dynamics and is still an open problem even in the
simplest cases, such as in the 3D Euler equations and 2D natural convection.
Furthermore, blowup may be responsible for the energy cascade in developed
turbulence [1, 2, 3]. However, even the numeric approach to this problem is
extremely complicated, as simulations of these non-linear systems, of a great
number of degrees of freedom, must be done over a large range of scales. A
more detailed account on previous studies on singularity structure in ideal fluid
equations can be found in [4], as well as some of the difficulties involved in the
small scale simulations necessary.

Dynamic (shell) models of turbulence consist of systems of non-linear Or-
dinary Differential Equations (ODE’s) built following the general structure of
the fourier transform of the flow equations while preserving some of it’s general
properties, such as scaling laws and ideal invariants. Futhermore, the space
of wave-vectors is discretized into concentric spheres, and to each sphere are
assigned scalar variables, which are associated to the physical variables which
describe the original flow and have their dynamic described by the shell model.
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This greatly reduces the number of degrees of freedom of the model while pre-
serving many non-trivial and interesting features, such as energy and entropy
cascades and anomalous turbulent spectra [5, 6], making possible very precise
numerical simulations. This compels the study of shell models in search of clues
to understand more clearly turbulent phenomena. But despite their simplicity,
much of shell model dynamics is yet to be understood.

Being good candidates to reproduce general properties of turbulent phe-
nomena while enabling precise simulations for system of very high Raynolds
numbers, shell models can be great tools if applied to astrophysics. Simulations
of magnetohydrodynamics in the early universe studying the effects of plasma
viscosity on primordial magnetic fields [7] as well as studies of scaling exponents
of probabilities distributions of quantities in solar flares [8] are examples of such
applications.

The present work is mainly concerned with studying blowup for a simple
MHD shell model and introducing a renormalization scheme for it. We study
the basic properties of the renormalized model and it’s relation to the original
one. In section 2, incompressible MHD equations are breafly introduced. Sec-
tion 3 introduces the MHD shell model studied and we prove a criterion for
blowup in this model. In section 4 we define a renormalization scheme which
takes blowup time to infinity, deduce the renormalized shell model and study
its symmetries. Numeric solutions for the pure hydrodynamic model are given
in section 5, as well as a theorem suggesting a method for their analysis. In
section 6 numeric solutions are given for the MHD shell model.

2 Incompressible MHD equations

The unforced MHD equations for incompressible systems read [9]:

∂v

∂t
− ν∇2v = −(v · ∇)v + (b · ∇)b−∇p,

∂b

∂t
− η∇2b = ∇× (v× b),

∇ · v = 0 , ∇ · b = 0,

(1)

where v and b are the velocity and induced magnetic fields, p is the total pres-
sure, both magnetic and kinetic, while the density ρ has been taken as one. The
induced magnetic field b was normalized by

√
4πρ, being then measured in units

of velocity. These equations follow from the Navier-Stokes equation taking into
account the Lorentz force and from Maxwell equations [9]. First equation is a
Cauchy momentum equation considering eletromagnetic forces and stress, and
describes the momentum transport of an infinitesimal fluid volume. The second
equation models magnetic field dynamics, following from Faraday’s law, Ohm’s
law and the uniform cunductivity assumption [4]. Third and fourth equations
are respectively the continuity equation, accounting for the conservation of to-
tal fluid mass, and Gauss’ law for magnetism, which states the nonexistence of
magnetic monopoles.

The non-linear terms on the right hand side redistribute magnetic and ki-
netic energy among the full range of scales of the system. When the transference
of kinetic to magnetic energy exactly compensates energy dissipation caused by
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magnetic diffusivity, magnetic energy does not decay with time. This phe-
nomenon is called dynamo action.

Three-dimensional systems have three ideal quadratic invariants, the total
energy (E), the total correlation (C) and total magnetic helicity (H) given as
follows:

E =
1

2

∫
(v2 + b2)d3x

C =

∫
v · bd3x

H =

∫
a · (∇× a)d3x

where a = ∇×b. The reader may refer to chapter 2 of [4] for the proof of these
invariances.

3 Shell Model for MHD Turbulence

Shell models are in general built by discretizing the wave vector space into
concentric spheres, which raddi satisfy a geometric progression kn = k0h

n. To
each shell is assigned real or complex scalar dynamic variables analogous to the
ones describing the physical flow; in the case of MHD shell models these variables
are the shell velocity vn(t) and induced shell magnetic field bn(t). Considering
that the equations of the shell model must have the same structure as the MHD
equations in the Fourier space, these equations must have the general form

dvn
dt

= knBn + Cn + Fn,

dbn
dt

= knDn + En + Gn,

where Bn and Dn are quadratic nonlinear coupling terms; Cn and En are dissi-
pative terms; Fn and Gn are forcing terms. All these terms are chosen in order
to preserve scale invariance, specific ideal invariants and other properties of the
MHD equations.

Let us take the unforced shell model for MHD turbulence modified by
Gloaguen et al. [10] from the mixed Obukhov-Novikov hydrodynamic shell
model as

dvn
dt

= Akn[v2n−1 − b2n−1 − h(vnvn+1 − bnbn+1)]+

+Bkn[vn−1vn − bn−1bn − h(v2n+1 − b2n+1)]− νk2nvn,
dbn
dt

= Akn+1[vn+1bn − vnbn+1] +Bkn[vnbn−1 − vn−1bn]− ηk2nbn,

(2)

where kn = k0h
n, ν is the kinematic viscosity, η is the magnetic diffusivity and

A and B are arbitrary coupling coefficients. Usually, one takes h = 2. This
system is based on the restriction to real variables, interaction only between
nearest neighboors and ideal conservation of total energy and total correlation.

We are concerned with the uniparametric analysis of the inviscid model that
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follows from the choice ν = η = 0, B = 1 and A = ε, written as follows:

dvn
dt

= kn[ε(v2n−1 − b2n−1) + vn−1vn − bn−1bn]

− kn+1[v2n+1 − b2n+1 + ε(vnvn+1 − bnbn+1)],

dbn
dt

= εkn+1[vn+1bn − vnbn+1] + kn[vnbn−1 − vn−1bn].

(3)

The ideal invariants of our system are the total energy and the cross-correlation,

E = 1
2

∑
(u2n + b2n) , C =

∑
unbn .

In the study of blowups in the model (3), i.e. the development of singularities
in initialy regular solutions of our model in finite time, the following definitions
of norms are most useful,

‖v‖1 =
(∑

k2nv
2
n

)1/2
,

‖v‖1,∞ = sup
n

kn |vn| .
(4)

Regular solutions of (3) are such that:

‖v‖1 + ‖b‖1 <∞ . (5)

Local existence of solutions satisfying the above condition can be proved
using the Picard theorem in the same way as done in [11] for the inviscid Sabra
shell model (a complex model for 3D MHD turbulence, considering nearest and
next-nearest neighbours and imposing all three ideal invariants [8]), making the
natural modifications due to the difference in the nonlinear therms.

Formation of blowup at t = tc implies that

sup
0≤t<tc

(‖v‖1 + ‖b‖1) =∞. (6)

The following theorem serves as a blowup criterion for model (3).

Theorem 1 Let vn(t) and bn(t) be a smooth solution of (3) satisfying the con-
dition (5) for 0 ≤ t < tc, where tc is the maximal time of existence for such
solution.
Then, either tc =∞ or ∫ tc

0

‖v‖1,∞ dt =∞. (7)

Proof: If (7) is satisfied, it follows that ‖v‖1,∞ is unbounded for 0 ≤ t < tc and
(6) is satisfied, making (7) a sufficient condition for blowup. Let us show that
it is also a necessary condition. Using the definitions (4) and equations (3) we
find the relation:

1

2

d

dt

(
‖v‖21 + ‖b‖21

)
=
∑

k2nun
dun
dt

+
∑

k2nbn
dbn
dt

=
∑

k3nvn[ε
(
v2n+1 − b2n+1 − (vnvn−1 − bnbn−1)

)
+ vnvn+1 − bnbn+1 − h

(
v2n−1 − b2n−1

)
]

+
∑

k3nbn [hε (vn−1bn − vnbn−1) + vnbn+1 − vn+1bn] .

(8)
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Using the triangular and Cauchy-Schwarz inequalities as well as kn |vn| ≤
‖v‖1,∞ for any shell number n, we can find the following inequality for some
constant D:

d

dt

(
‖v‖21 + ‖b‖21

)
< D ‖v‖1,∞

(
‖v‖21 + ‖b‖21

)
. (9)

From the use of the Grownwall inequality [12] we can find an upper bound
for the sum of the squared norms:(

‖v‖21 + ‖b‖21
)
t=tc

<
(
‖v‖21 + ‖b‖21

)
t=0

exp

(
D

∫ tc

0

‖v‖1,∞ dt

)
(10)

Showing that (7) is necessary for (6).

4 Renormalization of the system

We introduce a renormalization scheme, analogous to the one suggested by Dom-
bre and Gilson [13] for the Obukhov-Novikov model [14, 15], with the purpose of
moving tc to infinity in the new system and making standard dynamical system
methods available.

Definition Let τ be the renormalized time defined implicitly by

t =

∫ τ

0

exp

(
−
∫ τ ′

0

R(τ ′′)dτ ′′

)
dτ ′ (11)

We thus define the renormalized shell speed un and renormalized induced
shell magnetic field βn as

un = exp

(
−
∫ τ

0

R(τ ′)dτ ′
)
knvn,

βn = exp

(
−
∫ τ

0

R(τ ′)dτ ′
)
knbn.

(12)

The system of equations that describe the temporal evolution of the renor-
malized model can be easily obtained by differentiating (12) with respect to
τ , using the definition of t(τ) given by (11) and the original system (3). Our
renormalized model is thus given by:

dun
dτ

= −R(τ)un + Pn ,
dβn
dτ

= −R(τ)βn +Qn (13)

where

Pn = ε(h2(u2n−1 − β2
n−1)− unun+1 + βnβn+1)

+ h(un−1un − βn−1βn)− h−1(u2n+1 − β2
n+1),

Qn = ε(un+1βn − unβn+1) + h(unβn−1 − un−1βn).

(14)

We can determine the function R(τ) by imposing conservation of ”energy”
in the renormalized system (13),

1

2

d

dτ

∑
u2n + β2

n =
∑

[unPn + βnQn]−R
∑

[u2n + β2
n] = 0.
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Which can be satisfied choosing

R(τ) =

∑
unPn + βnQn∑
u2n + β2

n

(15)

so that
∑

(u2n + β2
n) = C is conserved.

From (12) at τ = 0 and (4) for initial condition of finite norm, we have∑
u2n =

∑
k2nv

2
n = ‖v‖21 <∞.

From the same arguments for βn it follows that C <∞.
We now verify that the function (15) is well defined for any nontrivial solu-

tion, concerning ourselves only with such solutions in what follows.

Lemma 2 Nontrivial solution un and βn of the renormalized system (13) exists
globaly for 0 ≤ τ <∞ and is related by (11) and (12) to the solution vn and bn of
the original system (3) for t < tc, where tc is the blowup time from Theorem 1.

Proof: Since we have constructed the renormalized system (13) from system (3)
by defining (12), it suffices only to show that (15) is well defined and that any
τ ≥ 0 corresponds to t < tc.

From the definition of the constant C above, it follows that |un| < C1/2

and |βn| < C1/2. Since C < ∞, we need only consider the numerator in the
definition of R(τ). Substitution of Pn and Qn given by (13) leads to∑

(unPn + βnQn) =
∑

un[ε(h2(u2n−1 − β2
n−1)− unun+1 + βnβn+1)

+ h(un−1un − βn−1βn)− h−1(u2n+1 − β2
n+1)]

+
∑

βn[ε(un+1βn − unβn+1) + h(unβn−1 − un−1βn)]

all the twelve terms above can be bounded in a similar way, as done bellow for
the first term:

∣∣εh2u2n−1∣∣ ≤ |ε|h2C.
As such, |R(τ)| <∞ for all τ ≥ 0.
From the definitions (12) and that |un| < C1/2 we have |knvn(t)| < ∞, i.e.

‖v‖1,∞ < ∞, for any t corresponding to 0 ≤ τ < ∞. By Theorem 1 we have
that t < tc.

Next, we shall study the symmetries of the renormalized system (13) and
how they are related to the symmetries of the original system (3).

It follows from the usual analysis that the renormalized system has the fol-
lowing symmetries:
(S.R.1) τ → τ/a, un → aun, βn → aβn for arbitrary real constant a;
(S.R.2) τ → τ − τ0 for arbitrary real constant τ0;
(S.R.3) un → un+1, βn → βn+1

Lemma 3 The symmetries (S.R.1)-(S.R.3) of the renormalized system (13) are
aquivalent to the following symmetries of the original system (3):
(S.N.1) t→ t/a, vn → avn, bn → abn
for arbitrary real constant a;
(S.N.2) t → t/a − t0, vn → avn, bn → abn, where both a and t0 are constants
uniquely determined by τ0 in (S.R.2);
(S.N.3) vn → hvn+1, bn → hbn+1
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Solutions of the renormalized system (13) correspond to solution of the original
system (3) by definitions (11) and (12).

Here we prove only symmetry (S.N.2), which is the most complicated. The
other symmetries are proven with similar arguments.
Proof of (S.N.2):

Let τ̂ = τ − τ0, ûn(τ̂) = un(τ), β̂n(τ̂) = βn(τ). It follows that R̂(τ̂) = R(τ) =
R(τ̂ + τ0).

From defenition (11):

t̂ =

∫ τ̂

0

exp

(
−
∫ τ ′

0

R̂(τ ′′)dτ ′′

)
dτ ′ =

∫ τ−τ0

0

exp

(
−
∫ τ ′

0

R(τ ′′ + τ0)dτ ′′

)
dτ ′

=

∫ τ

τ0

exp

(
−
∫ ξ′

τ0

R(ξ′′)dξ′′

)
dξ′

=

∫ τ
0

exp
(
−
∫ τ ′

0
R(τ ′′)dτ ′′

)
dτ ′

exp
(
−
∫ τ0
0
R(τ ′)dτ ′

) −
∫ τ0

0

exp

(
−
∫ τ ′

0

R(τ ′′)dτ ′′

)
dτ ′

=
t

a
− t0

where the subtitution ξ = τ − τ0 has been breafly used and

a = exp

(
−
∫ τ0

0

R(τ ′′dτ ′′)

)
, t0 =

∫ τ0

0

exp

(
−
∫ τ ′

0

R(τ ′′)dτ ′′

)
dτ ′

In a similar manner:

v̂n(τ̂) = exp

(∫ τ̂

0

R̂(τ ′)dτ ′

)
k−1n ûn(τ̂) = exp

(∫ τ−τ0

0

R(τ ′ + τ0)dτ ′
)
k−1n un(τ)

= exp

(∫ τ

τ0

R(ξ′)dξ′
)
k−1n un(τ) = avn(t)

Simmetry for bn(t) follows in exactly the same manner.

Blowup in the original system can be understood from analysis of limiting
solutions of the renormalized system. In this work we are concerned with the
study of self-similar and periodic solutions of system (13).

5 Pure hydrodynamic model

For bn ≡ 0 our system reduces to:

dvn
dt

= kn[ε(v2n−1 − hvnvn+1) + vn−1vn − hv2n+1] (16)

which is associated by definitions (11) and (12) to the system:

dun
dτ

= −R(τ)un + Pn

Pn = ε(h2u2n−1−unun+1) + hun−1un − h−1u2n+1

(17)
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Figure 1: Blowup for the inviscid O.N. hydrodynamic shell model for ε = 0.5: a)
soliton for renormalized variable un(τ); b) numerical solution for variable vn(t).
tc = 1.89 is equilant to τ →∞.

For ε between [−10,−1] and [0.5, 10] we have numericaly found only trav-
eling wave asymptotic solutions for (17), which were first observed in [13]. In
the following numerical solutions presented we have made the choices k0 = 1,
h = 2. Figure 1 shows solution for ε = 0.5.

For large τ , asymptotic solutions are solitary travelling waves:

un(τ) = aU(n− aτ) (18)

which travels between shells towards large n with constant positive speed a.
Note that a in (18) is related to symmetry (S.R.1). Function U(ξ) → 0 as
ξ → ±∞.

The following theorem, modified from the similar result in [13], gives self-
similar solutions for the original variables vn(t) based on the solutions found for
the renormalized variables un(τ). Note that similar solutions for shell velocities
have been found by [16, 17, 18, 19].

Theorem 4 Taking a = 1 in (18), let us define the scalling exponent

y =
1

log h

∫ 1/a

0

R(τ)dτ (19)

and the function

V (t− tc) = exp

(∫ τ

0

R(τ)dτ

)
U(−τ) (20)

where τ is related to t by (11) and R(τ) is given by (15).
If y > 0, then solution vn(t) related to (18), for arbitrary posivite constant

a, is given by
vn(t) = aky−1n V (akyn(t− tc)) (21)

where the blowup time tc <∞ is given by

tc =

∫ ∞
0

exp

(
−
∫ τ ′

0

R(τ ′′)dτ ′′

)
dτ ′ (22)
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Proof: From (3) we have that:

t− tc 7→
t− tc
a

, then vn 7→ avn

showing that the dependence of a in both (18) and (21) is due to the same
symetry. As such, we can make the choice a = 1 in the rest of the proof without
loss of generality.

First, let us show that integral (22) converges. From (18) and (15), we
conclude that R(τ) must be periodic with period 1/a = 1. As such, from
definition (19), a constant D can be found satisfying the inequality∫ τ

0

R(τ ′)dτ ′ > D + τy log h > 0

which, from defintion of tc gives the desired result for every positive y

tc <

∫ ∞
0

exp (−D − τy log h) <∞

From (19), definition of kn for k0 = 1 and periodicity of R(τ), for any τ we
arrive at:

kyn = exp

(∫ τ+n

τ

R(τ ′)dτ ′
)

(23)

Let us study time t′ correspondent to τ +n. Using definitions (11) and (22)

tc − t′ =

∫ ∞
τ+n

exp

(
−
∫ τ ′

0

R(τ ′′)dτ ′′

)
dτ ′ =

∫ ∞
τ

exp

(
−
∫ τ̂+n

0

R(τ ′′)dτ ′′

)
dτ̂

=

∫ ∞
τ

exp

(
−
∫ τ̂

0

R(τ ′′)dτ ′′ −
∫ τ̂+n

τ̂

R(τ ′′)dτ ′′

)
dτ̂

where change of variables τ ′ = τ̂ + n was made. Using (23) we arrive at

tc − t′ = k−yn (tc − t) (24)

Similarly, using (12), (23), (18) and definition (20)

vn(t′) = k−1n exp

(∫ τ+n

0

R(τ ′)dτ ′
)
un(τ + n)

= ky−1n exp

(∫ τ

0

R(τ ′)dτ ′
)
U(−τ) = ky−1n V (t− tc)

Using (24) we arrive at the intended equation for a = 1

vn(t) = ky−1n V (kyn(t− tc))

Note that the function V (ξ) and the scaling exponent y do not depend on
initial conditions. As a result, asymptotic solutions of the form (21) are univer-
sal.
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6 MHD model

Let us return to the MHD models (3) and (13) with nonzero shell magnetic
fields.

We present numerical solutions for the initial shell model (3) showing blowup
as well as numerical solutions to the renormalized system (13). All simulations
are carried out under the same values for the initial conditions, which are de-
termined for the renormalized system from initial conditions for the shell model
and renormalization scheme presented in (11) and (12); the initial conditions
used are: v0(0) = 0.5, v1(0) = 0.15, b0(0) = 0.3 and b1(0) = 0.01. Only the
parameter ε is varied.

6.1 Self-similar solution

For ε = 0.5 we have found self-similar solution for the renormalized shell speed,
shown in Fig.2; blowup happens at tc = 1.7482.

We observe a traveling wave solution for renormalized shell velocities, simi-
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Figure 2: Numerical solutions for (13) for (a) renormalized shell speed un(τ)
and (b) renormalized induced shell magnetic field βn(τ) for ε = 0.5.

tar to the ones shown in Fig. 1a, while the renormalized induced magnetic field
vanishes rapidly, indicating transformation of ”magnetic energy” to ”kinetic en-
ergy”.

The corresponding numeric solutions to the original shell model (3) are
shown in Fig.3. Note that the general behaviour of the shell speed is very
similar to the one presented for the hydrodynamic shell model in Section 5, and
that blowup does not seem to happen for the induced magnetic field. Observe
that, as system approaches blowup, magnetic energy increases monotonically.

6.2 Periodic solution

We have numerically found periodic solutions for the induced magnetic field for
ε = −1.45, shown in Fig.4b. For this value of ε we have calculated tc = 2.4761.

We observe that the solution for the renormalized shell velocity is a traveling
wave while the solution for the renormalized induced magnetic field is given by
a slowly decaying pulsating wave. The considerably small decaying rate of the
induced shell magnetic field amplitudes suggests the possibility of renormalized
solutions analogous to the dynamo effect.
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Figure 3: Numerical solutions for (3) for (a) shell speed vn(t) and (b) induced
shell magnetic field bn(t) for ε = 0.5. Blowup happens at tc = 1.7482.
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Figure 4: Numerical solutions of system (13) for (a) renormalized shell speed
un(τ) and (b, c) renormalized induced shell magnetic field βn(τ) for ε = −1.45
at different intervals of τ .
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Figure 5: Numerical solutions for (3) for (a) shell speed vn(t) and (b) induced
shell magnetic field bn(t) for ε = −1.45. Blowup happens at tc = 2.4761.

Fig. 5 shows numeric solution to the original shell model. We observe the
same general behaviour shown in Fig. 4, suggesting the possibility of finding
asymptotic solutions to the initial system (3) from analysys of solutions for the
renormalized system (13), as done in Section 5 and [20].

7 Conclusion

Starting from the unforced inviscid case of the shell model of magnetic turbu-
lence proposed in [10, 6], we numerically studied it’s blowup and followed the
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path proposed in [20], proving a new analytic criterion for blow-up in this sys-
tem. We proposed a renormalization scheme in the spirit of [13, 20] and carried
out the study of the relations between the renormalized and original systems.
Based on this study, a method for obtaining asymptotic solutions for the pure
hydrodynamic model (16) is proposed as done by [20] and we present some
numeric solutions supporting the possibility of finding a similar result for our
studied model.

As a future work we expect to prove a method similar to Theorem 4 for the
analysis of systems (3) and (13), as well as carry on this analysis numerically.
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