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Abstract

This work uses Fuzzy Sets Theory to develop analytical tools in order to guide the construction of
the fuzzy phase diagram associated to the one-dimensional spin- 1

2 Ising model subject to an external
magnetic field, taking into account uncertainties presents in both exchange parameter J and magnetic
field h. After that, by utilizing the fuzzy phase diagram just constructed, the consequences arising from
those uncertain parameters on graphs of a few thermodynamics quantities such as magnetization and
entropy are analyzed.
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1 Introduction
Ising-like chains [1] are amongst the most important models of the Statistical Physics as well as

Condensed Matter Physics. Such an importance lies not only in the fact of its wide application to several
phenomena, but also as a suitable toy model for testing more general chains. The Ising model is also
applied in economy, social sciences, biology, biomembranes among other areas [2, 3, 4]. Therefore a
generalization from this model can be very important for differents knowledge areas.

In turn, Fuzzy Sets Theory has provided methods and algorithms where uncertain, vague or ambiguous
description or reasoning are required, as occur in the fields of artificial intelligence, economics, pattern
recognition (fuzzy clustering), medicine, ecology and theory of information [5].

In [6] the Ising model was studied by replacing all the numbers (Ising-spins) by fuzzy numbers and all
operations for their correspondents fuzzy operations. In the same article, it was shown that the defuzzified
partition function by the center of gravity method engender a partition function of a network of soft-spin
scalar (Ginzburg-Landau), and in addition there are other possible models for mapping the network.

In article [7] was proposed a description of evolution of fuzzy systems with uncertainty, and has been
shown that this dynamics has the form of a Hamiltonian on the extended state space composed of physical
and information components, if used the t-min-norm. It was also shown that if the product t-norm is used,
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the dynamics in a continuous universe is similar to the dynamics of stochastic, but with the probability
distribution exchanged by the density of possibilities.

The present work uses another strategy to put uncertainties into the classical model. As an alternative
to [6], it was chosen to preserve the entire fundamental structure –i.e, that concerning Quantum Mechanics–
and add uncertainties on the measurable parameters presents, namely, exchange energy J and external
magnetic field h. From this, it is proposed a way to build the fuzzy phase diagram for this model and analyze
the emergent properties generated by the fuzzyfication process. Additionally the thermodynamic properties
are analyzed through confrontation between the physical quantities obtained from the fuzzyfication and
defuzzification process with the correspondents classical (standard) quantities.

The outline of this work is as following: in section 2 a quick rememoration of the standard thermo-
dynamic of the concerned model is performed; in section 3, and at appendix, are presented some of the
main definitions and results of Fuzzy Sets Theory, in particular results, mainly the Theorem 3.1 and
the Proposition 3.2, which will be utilized later on; section 4 discusses the fuzzy thermodynamic of the
concerned model, exposed firstly in subsection 4.1 in which it was constructed the fuzzy phase diagram
with the support of the mentioned theorems, and after, in subsection 4.2, constituted by the fuzzy graphs
of two thermodynamic quantities; finally the conclusions presented in sec. 5.

2 The Model and standard Thermodynamic

The hamiltonian of the one-dimensional spin-1
2 Ising Model is given by H = ∑

N
i=1 H(σi,σi+1), where

H(σi,σi+1) = −Jσiσi+1−
h
2
(σi +σi+1), (1)

is the interaction energy of a plaquette composed by two Ising-spins, whereas N is the number of sites,
σi =±1, J is the exchange constant representing the interaction force beetwen two spins and h symbolizes
the external magnetic field.

To study the thermodynamic is necessary the largest eigenvalue Λ+ of the transfer matrix (further
details can be seen in [8]), given by

Λ+ =
1
2

(
Z(1,1)+Z(−1,−1)

)
+

1
2

√(
Z(1,1)−Z(−1,−1)

)2
+ 4Z(1,−1)Z(−1,1) (2)

where

Z(σ1σ2) = exp(βJ(σ1σ2)+
βh
2
(σ1 +σ2)) (3)

and β = 1
kT (in this expression, k is the Boltzmann constant and T is the temperature). So, the free energy

of the system in thermodynamic limit reads

W = −1
β

lim
N→∞

ln
(
ΛN

+

)
N

= −1
β

ln (Λ+) . (4)

From this, one can study the standard thermodynamic quantities of the model: entropy (S = −∂W
∂T ),

specific heat (C = T ∂S
∂T ), and magnetization (M = −∂W

∂h ).
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The building of the phase diagram for this system requires the knowledge of the ground state energies
of a plaquette of it, summarized by (1). Thus, the energies in which we are interested are

E1(J,h) = −J−h,

E2(J,h) = J,

E3(J,h) = −J + h. (5)

To build it, we must select the lowest value of the three energies above, namely E1 or E2 or E3, for each
value of J and h. After this we plot as in fig. 1. From this figure it is noted that the intersections between
the ground state energies, E1 ∩E2 and E1 ∩E3 and E2 ∩E3, are contained in standard phase diagram,
forming the boundaries between one energy and another. Selecting it, one obtains as in fig. 2.

Figure 1: Graph which presents the lowest energies for each pair (J,h) builded from (5). The colors represent
values of energy.

Figure 2: Phase diagram builded from the intersections between ground state energies, diplayed in (5).

The analysis by way of graphs of the themodynamics properties aforementioned is guided by the phase
diagram constructed from energies above (see fig. 2). This work intends perform a similar procedure, just
by replacing the energies in (5) and the thermodynamic properties by its fuzzy counterparts. However is
necessary know how to do that. It is the purpose of next section providing this knowledge.
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3 Fuzzy Sets Theory
In general terms, each set can be assigned a membership function, f, which will be responsible for

assigning to each element of a previously defined universe set one of the following two values: 0 or 1. If
the value of the function in the element is 0, then this element does not belong to referred set; otherwise it
belongs.

However, in 1965 Zadeh [9] published a work in which a new class of sets was defined. In this, whose
sets are called fuzzy sets, the membership function is allowed to assign any value within the range [0,1].
A good example of a fuzzy set could be a cloud since the interior points closer to the center belong “more”
to the cloud than those in its diffuse boundary [5].

There are many useful concepts in Fuzzy Sets Theory, such as α-cuts, fuzzy numbers, and the Extension
Principle stated by Zadeh for application in fuzzy functions, but all are presented in appendix along with
the demonstration of following theorem, a very important result for the developments to come. In it F(R)
designates the set of all fuzzy numbers.

Theorem 3.1. Let F : [α,β]× [γ,δ]→ F(R) be a function that associates a pair of real numbers to a
fuzzy number, defined by

F(x,y;a,ra,b,rb) = Ag(x)+Bh(y), (6)

such that g : [α,β]→ R and h : [γ,δ]→ R are monotonic functions and A and B are triangular fuzzy
numbers, respectively centered in a and b, with ra and rb uncertainties given by

A(t) =

{
t+ra−a

ra
, if t ∈ [a− ra,a]

ra+a−t
ra

, if t ∈ [a,a+ ra]

and

B(t) =

{
t+rb−b

rb
, if t ∈ [b− rb,b]

rb+b−t
rb

, if t ∈ [b,b+ rb].
.

i) If g(x),h(y) ≥ 0, ∀x ∈ [α,β] and ∀y ∈ [γ,δ], then

F(x,y;a,ra,b,rb)(t) =


t+g(x)(a−ra)+h(y)(b−rb)

rag(x)+rbh(y) , t ∈ [g(x)(a− ra)+ h(y)(b− rb),
ag(x)+ bh(y)]

g(x)(a+ra)+h(y)(b+rb)−t
rag(x)+rbh(y) , t ∈ [ag(x)+ bh(y),

g(x)(a+ ra)+ h(y)(b+ rb)];

ii) If g(x) ≤ 0 and h(y) ≥ 0 ∀x ∈ [α,β] and ∀y ∈ [γ,δ], then

F(x,y;a,ra,b,rb)(t) =


t+|g(x)|(a+ra)−h(y)(b−rb)

ra|g(x)|+rbh(y) , t ∈ [−|g(x)|(a+ ra)+ h(y)(b− rb),
−a|g(x)|+ bh(x)]

|g(x)|(a−ra)+h(y)(b+rb)−t
rag(x)+rbh(y) , t ∈ [−a|g(x)|+ bh(y),

−|g(x)|(a− ra)+ h(y)(b+ rb)]

24



Physicae Organum • Brasília, vol. 1, n. 2 • 2018

iii) If g(x),h(y) ≤ 0, ∀x ∈ [α,β] and ∀y ∈ [γ,δ], then

F(x,y;a,ra,b,rb)(t) =


t+|g(x)|(a+ra)+|h(y)|(b+rb)

ra|g(x)|+rb|h(y)|
, t ∈ [−|g(x)|(a+ ra)−|h(y)|(b− rb),

−a|g(x)|−b|h(y)|]
|g(x)|(a−ra)+|h(y)|(b+rb)−t

rag(x)+rbh(y) , t ∈ [−a|g(x)|−b|h(y)|,
−|g(x)|(a− ra)+ |h(y)|(b− rb)]

In the following it is enunciated a result that could be stated as an observation; due to its simplicity,
the demonstration will be omitted. Nevertheless the appearance, it will play a key role in guiding the
interpretation of the results to come.

Proposition 3.2. Let A be a triangular fuzzy number of uncertainty denoted by r such that A(a) = 1
and A(x),A(y) > 0 such that |x− y|< r. We claim that the membership is an “almostness” relation, i.e,

• the membership of x with respect to A is equal to membership of a with respect to X ;

• the memberships of x to Y and of y to X are equal each other;

where X and Y are triangular fuzzy numbers centered in x and in y both of uncertainty r.

Remark 1. We can to do the following interpretation, much more suggestive:

i) Of course a real number is almost itself with degree of success equal to 1;

ii) If a real number is almost another, then this latter is almost the former with the same degree of
success;

iii) Under the conditions of the proposition, if x is almost a and a is almost y then x is almost y.

4 Fuzzy Thermodynamic
This section is divided in two subsections. In the first one, will be constructed the fuzzy phase diagram

for the Ising model. Graphs of a few “fuzzified” thermodynamic properties are displayed in order of
examine the behavior of it after the fuzzification process as well as to ascertain the existence of a plausible
linking between what the fuzzy phase diagram display and what the fuzzified thermodynamic properties
show.

4.1 Fuzzy Phase Diagram
According to [5], the uncertainty, vagueness and ambiguity which are inherent to Fuzzy Mathematics

can be attributed to either: (a) presence of subjectivity in the variables chosen or to, (b) lack of complete
information of the system in consideration or an incomplete definition of the system. In this work the
latter situation is present, since there is no complete and definite information about the values assumed by
the magnetic field and the exchange parameter, respectively h and J.
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To construct the fuzzy phase diagram, the variables J and h, in (5), will be replaced by their fuzzy
counterparts. This can be done by setting

J(J)(t) = SJ(t)J (7)

and
h(h)(t) = Sh(t)h, (8)

where

SJ(t) =


t+ rJ
|J|−1
rJ
|J|

, t ∈ [1− rJ
|J| ,1]

rJ
|J|+1−t

rJ
|J|

, t ∈ [1,1+ rJ
|J| ]

, Sh(t) =


t+ rh
|h|−1
rh
|h|

, t ∈ [1− rh
|h| ,1]

rh
|h|+1−t

rh
|h|

, t ∈ [1,1+ rh
|h| ].

Note that the functions Ss (“S” of special ) were designed in such a way to preserve the uncertainties
of J and of h.

Thus the symbolic expressions for the energies stay

E1(J,h) = −J−h,

E2(J,h) = J,

E3(J,h) = −J+h. (9)

Following the standard procedure, the fuzzy phase diagram is builded from fuzzy operation min of
the fuzzy energies above, given by Min(E1,E2,E3) (see Proposition A.3). However with the aid of the
Proposition A.4 and Theorem 3.1, one note that among the intersections E1∩E2, E1∩E3 and E2∩E3 :

- For J ≤ 0 and h≥ 0, only
E1∩E2 ⊂Min(E1,E2,E3)

- For J,h≤ 0, only
E2∩E3 ⊂Min(E1,E2,E3)

- For J ≥ 0 and h≤ 0, only

(E1∩E3)∪ (E2∩E3) ⊂Min(E1,E2,E3)

- For J,h≥ 0, only
(E1∩E3)∪ (E1∩E2) ⊂Min(E1,E2,E3)

The result above shows that the intersections among the ground state energies are contained in the
lowest values of these energies. Because a phase diagram is made up by the intersections among the lowest
energies, only referred intersections will be used for build it.

Doing so,the correspondents expressions in fuzzy form will be searched, namely, E1∩E3, E1∩E2
and E2∩E3 and so join it. The calculations of theses expressions are easy but tedious, since is necessary
deal with the α-cuts of them, but can be performed with help of the Theorem 3.1 together with his
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demonstration. After doing them, one finds the functions whose graphs are displayed below. The
colors show the membership degree of the points with respect to the associated classical phase diagram
(rh = rJ = 0) displayed in fig. 2.

(a) rJ = 0.1, rh = 0. (b) rJ = 0.4, rh = 0

(c) rJ = 0, rh = 0.4 (d) rJ = 0.2, rh = 0.2

4.2 Thermodynamic Quantities

Now are presented some fuzzy graphs of two thermodynamic quantities, namely, entropy and magneti-
zation. For the construction of them, it was taken the classical (or standard) expressions of these quantities
and we fuzzified it by means of the Extension Principle (Axiom 4). Of course that to do this one needs
before provide, according to Axiom 2, the expressions which will define the fuzzy number associated to
variable (J or h) which are intended to “fuzzificate”. In such a case, will be used triangular fuzzy numbers,
as those displayed by Theorem 3.1.

Also will be shown the associated classical graphs displayed together with the graphs resulting of
defuzzification process, in which the center-of-gravity (COG) defuzzification method was utilized. The
aim of showing a defuzzified graph is not take it by the true representation of a property of the fuzzy Ising
model (whose role is played by the fuzzy graph), but as a way of provide insights on the fuzzified system.
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The aim is to arcertain whether the colorful regions presented by the fuzzy phase diagram (i.e, the
graphs themselves) coincide with transition zones. For this, was first fixed one variable (J or h) and started
with a point away of the plausible zone and compared the fuzzy graph with its correspondent classical
version at low temperatures. After this, penetrated into the plausible transition zone and choosed two
points on the same line (vertical or horizontal): one immediately before and other immediately after of
point on the classical graph (membership equal to one). The two fuzzy grahs was compared between them
and among correspondents classical versions. Finally, a point away of the plausible transition zone was
taken.

4.2.1 Fuzzy Entropy

If any positive J is identified as ferromagnetic phase and any negative J as antiferromagnetic phase
then, according to interpretation of Proposition 3.2, may to exist zones in which such phases are not
well-defined. More precisely, let J1 < 0 and J2 > 0 be numbers such that |J1− J2| < r, where r is the
uncertainty on the exchange energy J. So J1 represent the antiferromagnetic phase whereas J2 represent
the ferromagnetic phase. Hence follows of referred proposition that the antiferromagnetic phase is almost
ferromagnetic, and conversely; what lead us to say that these two phase are not well-delimited.

Figure 3: Fuzzy entropy in which rJ = 0.4, rh = 0, J = 1andh = 0.4. The colors show the membership degree of
points with respect to the associated classical graph.

28



Physicae Organum • Brasília, vol. 1, n. 2 • 2018

Figure 4: On the left side, the classical graph with J = 1andh = 0.4, overlapped to defuzzification of the fuzzy
graph above (see fig.3). On the right side, the behavior at low temperatures. Note that the starting point
of the larger membership line of the fuzzy graph is the same that one of its classical version.

Figure 5: Fuzzy entropy in which rJ = 0.4, rh = 0, J = 0.15andh = 0.4. The colors show the membership degree
of points with respect to the associated classical graph.

Figure 6: On the left side, the classical graph in which J = 0.2, h = 0.4 overlapped to defuzzification of the fuzzy
graph above (see fig.5). On the right side, the behavior at low temperatures. The analysis of these graphs
must be made together with next graphs (see figs 7 and 8). Note that given a fuzzy graph (e.g. that of fig.
5), the range at near zero temperatures comprehend the starting point of the classical graph associated to
the other fuzzy graph (in this case, that one of fig.7).
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Figure 7: Fuzzy entropy in which rJ = 0.4, rh = 0, J = −0.15andh = 0.4. Should be noted that both the fuzzy
graphs (this and the previous) has a global behaviour very similar. The colors show the membership
degree of points with respect to the associated classical graph.

Figure 8: On the left side, the classical graph with J =−0.15andh = 0.4, overlapped to defuzzification of the fuzzy
graph above (see fig. 7). The analysis is the same that one in previous case.

Figure 9: Fuzzy entropy in which rJ = 0.4, rh = 0, J = −1andh = 0.4. The colors show the membership degree of
points with respect to the associated classical graph.

30



Physicae Organum • Brasília, vol. 1, n. 2 • 2018

Figure 10: On the left side, the classical graph with J = −1andh = 0.4, overlapped to defuzzification of the fuzzy
graph above (see fig.9). Note that, in the fuzzy graph, the starting point of the larger membership line is
the same that one of its classical version.

If the fuzzy graph in fig. 3 and the classical graph in fig. 4 are compared each other, and the fuzzy
graph in fig. 9 and the classical graph in fig. 10 also are compared each other, it will be noted that the
fuzzy graphs are very similars to their classical counterparts. This fact is strengthened by the perfect
overlapping displayed between the classical graphs and the defuzzified graphs.

On the other hand, the fuzzy graphs lying in figures 5 and 7 are morphologically similars each other,
with special attention to temperatures near zero. This happen due to proximity between Js. It may be
necessary to note that the differences between the defuzzified graphs and the correspondents classical
versions displayed, respectively, in figures 6 and 8, are remarkable.

4.2.2 Fuzzy Magnetization

An analysis will now be developed taking into account only changes in horizontal direction of the fuzzy
phase diagram. More precisely, it will be fixed a value of J and leave the other variable, namely h, moving.
Hence the fuzzy phase diagram (c) will be used. Often the analysis of concerned fuzzy phase diagram
will have a classical phase diagram as reference. The phase diagram (a) display three approximately
well-delimited regions, what allow us to use it in practical analysis following. For such a phase diagram
(i.e, a classical phase diagram) one see that for a fixed J the transition between a region and the adjacent
to it is “abrupt”, in sense that it occurs through an only point. This is the most important characteristic
of a classical phase diagram that will be used here. In the following, again the whole analysis will be
performed with the help of Proposition 3.2. In all graphs below J = −0.5. One start with a point away
of the likely transition zone (note that in this moment we are refering to the fuzzy phase diagram (c)),
namely, h = 0.5. The correspondent graphs to this point are presents in figures 11 and 12. In this case, note
that the behavior of the fuzzy graph is similar to its associated classical graph, at least at low temperatures,
that is what matter. Now compare the fuzzy graphs of the figures 13, 15 and 17 each other. The behavior
of the three fuzzy graphs near zero are very similars, in agreement with the Proposition 3.2, because the
uncertainty is rh = 0.4. Therefore these three fuzzy graphs, considered in sequence, suggest us that the
transition in progress is “smooth”, in opposition to the classic case which, for J = −0.5, shall occur on
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the point h = 1, as is easy realize. Note, still, that the differences between the defuzzified graphs and
the respectives classical versions are remarkable. Lastly, because the fuzzy graph of fig. 19 is away of
transition zone, it is similar to its correspondent classical version.

Figure 11: Fuzzy magnetization in which rJ = 0, rh = 0.4, J = −0.5andh = 0.5. The colors show the membership
degree of points with respect to the associated classical graph.

Figure 12: On the right side, the correspondent classical graph with J =−0.5andh = 0.5, overlapped to defuzzifi-
cation of the fuzzy graph above (see fig.11). On the left side, the behavior at low temperatures. Note that
because the fuzzy graph is away of the classical transition point (which is h = 1), the starting points of
both of the graphs in this figure are the same.

Figure 13: Fuzzy magnetization in which rJ = 0, rh = 0.4, J = −0.5andh = 0.9. The colors show the membership
degree of points with respect to the associated classical graph.
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Figure 14: On the right side, the classical graph with J = −0.5, h = 0.5 overlapped to defuzzification of the fuzzy
graph above (see fig.13). This fuzzy graph together with the two next fuzzy graphs (namely, fig.15 and 17)
must be analysed at same time. Note that the distance of the concerned point (h = 0.9) to the classical
transition point (h = 1) is less than the uncertainty rh, so we are into transition zone.

Figure 15: Fuzzy magnetization in which rJ = 0, rh = 0.4, J = −0.5andh = 1. The colors show the membership
degree of points with respect to the associated classical graph.

Figure 16: On the right side, the classical graph in which J = −0.5, andh = 1, overlapped to defuzzification of the
fuzzy graph above (see fig.15). Now we are on the classical transition point.
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Figure 17: Fuzzy magnetization in which rJ = 0, rh = 0.4, J =−0.5andh = 1.2. Because we are still into transition
zone, the behavior of this graph near zero tend to be similar to that one presented by two last fuzzy
graphs. The colors show the membership degree of points with respect to the associated classical graph.

Figure 18: On the right side, the classical graph in which J = −0.5, andh = 1.2, overlapped to defuzzification of
the fuzzy graph above (see fig.17).

Figure 19: Fuzzy magnetization in which rJ = 0, rh = 0.4, J = −0.5andh = 1.5. The colors show the membership
degree of points with respect to the associated classical graph.
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Figure 20: On the right side, the classical graph with J = −0.5, andh = 1.5, overlapped to defuzzification of the
fuzzy graph above (see fig.19). Because we are out of the transition zone, the behavior of fuzzy graph
near zero is similar to the presented by its associated classical graph in the same region.

5 Conclusions
One can to list at least three interesting points, necessarily not independents each of other:

i) Firstly, it was noticed that the connection between the phase diagram and the behavior of the
thermodynamic properties in addition to be retained is generalized after to be done the fuzzification;

ii) For fixed J (or h), after the fuzzification the transition zones leave to be single points for becomes a
set of them.The outcome of this is an apparently more “smooth” transition;

iii) And finally, it was noted that the more salient discrepancies between the defuzzified and classical
graphs become manifest at low temperatures when the measurable parameters J and h takes values
in transition zones.

One can conclude by noting two points which are not entirely irrelevant about the analytical method for
the construction of some fuzzy phase diagrams developed by this work: at same time teach to fuzzificate a
class of functions, namely monotonic functions, it show how analytically to deal with them.
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A Appendix: Fuzzy Sets Theory
In this section are presented some definitions and results concerning fuzzy sets. For this, just for sake

of clarity, firstly are stated some axioms designed to treat indistinctly both classical sets and fuzzy sets.
Because are widely discussed in literature, no reference will be made except in special cases. For an
approach much more verbose, see [10].

Axiom 1. There exists a set.

Remark 2. It will be called it universe set and denoted by U .

Defintion 1. [membership function] It is said that f is a membership function if its domain is U and
its image is contained in [0,1]; f : U → [0,1].
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Definition 2. [support] It is called support of f : U → [0,1] the collection of elements of U such that
the image of each of which under f is nonzero ( f (x) > 0).

Axiom 2. A set is entirely defined by its membership function f .

Remark 3. Due to this axiom will be employed the same symbol to represent both the set and its
associated membership function.

Axiom 3. The membership function of U is U : U → [0,1], such that U(x) = 1, ∀x ∈U .

Definition 3. [subset] A is a subset of B, and denoted A⊂ B, if

A(x) ≤ B(x), ∀x ∈U .

Remark 4. It’s easy to conclude that every set is subset of U . It will be assumed this tacitly hereafter.

Definition 4. [intersection] If A and B are sets, then the intersection between them is the set

(A∩B)(x) = min{A(x),B(x)} , x ∈U .

Definition 5. [union] If A and B are sets, then the union between them is the set

(A∪B)(x) = max{A(x),B(x)} , x ∈U .

Definition 6. [α-cut] Let A be a set. The α-cut of A, Aα, where α ∈ [0,1], is the set defined as follows:

Aα(x) =
{

1, if A(x) ≥ α

0, othewise

for all x ∈U .
Proposition A.1. [10] If A and B are sets, then

i) (A∪B)α = Aα∪Bα,

ii) (A∩B)α = Aα∩Bα.

Proposition A.2. [10] A⊂ B ⇔ Aα ⊂ Bα, ∀α ∈ [0,1].
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The next axiom which stated is the renowned Extension Principle of Zadeh ( see [9]). From it, the
thermodynamic properties in a strictly computacional process will be fuzzificate.

Axiom 4. [Extension Principle] Let f : M→ N be a function such that M = M1×M2× ...×Mk, and
let A = A1×A2× ...×Ak ⊂M and B⊂ N be sets. The induced sets by f from the latter has the following
memberships functions:

f−1(B) : U → [0,1],

defined by
f−1(B)(x) = B( f (x)),

and
f (A) : U → [0,1],

defined by
f (A)(y) := supy= f (x1,x2,...,xk)min{A1(x1),A2(x2), ...,Ak(xk)} .

Definition 7. [fuzzy number]Let A : R→ [0,1] be a set. It is a fuzzy number if it satisfy the following
conditions:

i) There exists x such that A(x) = 1,

ii) Aα is compact for all α ∈ (0,1],

iii) the support of A is bounded.

The last axiom able us to extent the four arithmetic operations as well as the min and max operations
to the fuzzy numbers.

Definition 8. If A and B are fuzzy numbers and ∗ any of the arithmetic operations (such as sum,
subtraction, multiplication and division), then

(A∗B)(z) = supz=x∗ymin{A(x),B(y)} ,

Min(A,B)(z) = supz=min{x,y}min{A(x),B(y)} ,

Max(A,B)(z) = supz=max{x,y}min{A(x),B(y)} .

Proposition A.3. [11] Let A and B continuous fuzzy numbers such that Aα = [a1(α),b1(α)] e
Bα = [a2(α),b2(α)] . Then

Min(A,B)α = [min{a1(α),a2(α)} ,min{b1(α),b2(α)}] ,

Max(A,B)α = [max{a1(α),a2(α)} ,max{b1(α),b2(α)}] .

The next result will be very useful for the decision on how will be constructed the fuzzy phase diagram.
The correspondent demonstration can be found in [11] in an indirect way.
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Proposition A.4. [11] Let A and B be any fuzzy sets. Then A∩B⊂Min(A,B)

In the following are stated two lemmas which will provide support for the demonstration of the main
result of this work withing the framework of Fuzzy Sets Theory.

Lemma A.1. [12] If [a,b] and [c,d] are intervals of real line, then

[a,b]+ [c,d] = [a+ c,b+ d]

[a,b]− [c,d] = [a−d,b− c].

Lemma A.2. [10] If A e B are continuous fuzzy numbers, then

(A∗B)α = Aα ∗Bα,

for α ∈ [0,1].

Lemma A.3. [10] If A is a set, then
A =

⋃
α∈[0,1]

αAα,

that is,
A = supα∈[0,1] {αAα} .

Finally will be stated and demonstrated the most important result of this appendix.

Theorem A.8. Let F : [α,β]× [γ,δ]→ F(R) be a function that associates a pair of real numbers to a
fuzzy number, defined by

F(x,y;a,ra,b,rb) = Ag(x)+Bh(y), (10)

such that g : [α,β]→ R and h : [γ,δ]→ R are monotonic functions and A and B are triangular fuzzy
numbers, respectively centered in a and b, with ra and rb uncertainties given by

A(t) =

{
t+ra−a

ra
, if t ∈ [a− ra,a]

ra+a−t
ra

, if t ∈ [a,a+ ra]

and

B(t) =

{
t+rb−b

rb
, if t ∈ [b− rb,b]

rb+b−t
rb

, if t ∈ [b,b+ rb].
.

i) If g(x),h(y) ≥ 0, ∀x ∈ [α,β] and ∀y ∈ [γ,δ], then

F(x,y;a,ra,b,rb)(t) =


t+g(x)(a−ra)+h(y)(b−rb)

rag(x)+rbh(y) , t ∈ [g(x)(a− ra)+ h(y)(b− rb),
ag(x)+ bh(y)]

g(x)(a+ra)+h(y)(b+rb)−t
rag(x)+rbh(y) , t ∈ [ag(x)+ bh(y),

g(x)(a+ ra)+ h(y)(b+ rb)];
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ii) If g(x) ≤ 0 and h(y) ≥ 0 ∀x ∈ [α,β] and ∀y ∈ [γ,δ], then

F(x,y;a,ra,b,rb)(t) =


t+|g(x)|(a+ra)−h(y)(b−rb)

ra|g(x)|+rbh(y) , t ∈ [−|g(x)|(a+ ra)+ h(y)(b− rb),
−a|g(x)|+ bh(x)]

|g(x)|(a−ra)+h(y)(b+rb)−t
rag(x)+rbh(y) , t ∈ [−a|g(x)|+ bh(y),

−|g(x)|(a− ra)+ h(y)(b+ rb)]

iii) If g(x),h(y) ≤ 0, ∀x ∈ [α,β] and ∀y ∈ [γ,δ], then

F(x,y;a,ra,b,rb)(t) =


t+|g(x)|(a+ra)+|h(y)|(b+rb)

ra|g(x)|+rb|h(y)|
, t ∈ [−|g(x)|(a+ ra)−|h(y)|(b− rb),

−a|g(x)|−b|h(y)|]
|g(x)|(a−ra)+|h(y)|(b+rb)−t

rag(x)+rbh(y) , t ∈ [−a|g(x)|−b|h(y)|,
−|g(x)|(a− ra)+ |h(y)|(b− rb)]

Proof. It will be proved only the item i). The remaining proofs are analogous.
In accordance with last stated lemma, one can express any set in terms of its α-cuts. Therefore,

F(x,y) =
⋃

α∈[0,1]

αFα(x,y),

where

Fα(x,y) = (g(x)A+ h(y)B)α

= (g(x)A)α +(h(y)B)α

= g(x)Aα + h(y)Bα.

(11)

The last step is of very easy checking.
Firstly we will find the α-cuts:

A(t) =
t + ra−a

ra
≥ α ⇒ t ≥ ra(α−1)+ a,

A(t) =
ra + a− t

ra
≥ α ⇒ t ≤ ra(1−α)+ a,

⇒ Aα = [ra(α−1)+ a,ra(1−α)+ a] .

B(t) =
t + rb−b

rb
≥ α ⇒ t ≥ rb(α−1)+ b,

B(t) =
rb + b− t

rb
≥ α ⇒ t ≤ rb(1−α)+ b,
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⇒ Bα = [rb(α−1)+ b,rb(1−α)+ b] .

Thus,

Fα(x,y) = g(x) [ra(α−1)+ a,ra(1−α)+ a]+ h(y) [rb(α−1)+ b,rb(1−α)+ b]

= [g(x)ra(α−1)+ g(x)a+ h(x)rb(α−1)+ h(y)b,g(x)ra(1−α)+ g(x)a+

h(y)rb(1−α)+ h(x)b],

(12)

if
g(x),h(y) ≥ 0, ∀x ∈ [α,β] and ∀ ∈ [γ,δ].

α = 0 : [g(x)(a− ra)+ h(y)(b− rb),g(x)(ra + a)+ h(y)(b+ rb)]

α = 1 : [ag(x)+ bh(y),ag(x)+ bh(y)]

(13)

First interval:

g(x)ra(α−1)+ ag(x)+ h(y)rb(α−1)+ bh(y) ≤ t ≤ ag(x)+ bh(y)

⇒ α≤ t + g(x)(a− ra)+ h(y)(b− rb)

rag(x)+ rbh(y)
≤ 1.

We know that
F(x,y)(t) = supα {αFα(x,y)(t)} ;

F(x,y)α(t) =
{

1, t ∈ [g(x)(a− ra)−|h(y)|(b− rb),ag(x)+ bh(y)]
0, otherwise

⇒ αF(x,y)α(t) =
{

α, t ∈ [g(x)(a− ra)−|h(y)|(b− rb),ag(x)+ bh(y)]
0, otherwise

Thus,

F(x,y)(t) =
t + g(x)(a− ra)+ h(y)(b− rb)

rag(x)+ rbh(y)
, (14)

if
t ∈ [g(x)(a− ra)+ h(y)(b− rb),ag(x)+ bh(y)] .

Second interval:

ag(x)+ bh(y) ≤ t ≤ rag(x)(1−α)+ ag(x)+ rbh(y)(1−α)+ bh(x)

⇒ α≤ (a+ ra)g(x)+ (b+ rb)h(y)− t
rag(x)+ rbh(y)

≤ 1.
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Therefore,

F(x,y)(t) =
(a+ ra)g(x)+ (b+ rb)h(y)− t

rag(x)+ rbh(y)
, (15)

if
t ∈ [ag(x)+ bh(y),g(x)(a+ ra)+ h(y)(b+ rb)] .
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