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Abstract 
Evapotranspiration (ET) is a crucial element in the spatiotemporal dynamics of moisture, energy, and 
heat, and is related to climatic, pedogeomorphological, and phytophysiognomic aspects of the 
landscape. Therefore, estimating ET requires dynamic and integrated temporal analysis with 
biophysical landscape factors. The study aimed to analyze the behavior of ET through the analysis of 
land use and land cover and topographic in time series. The Simple Algorithm for Evapotranspiration 
Recovery (SAFER) model was used to obtain the variable ET in the periods of 01/21, 02/22, 05/13 and 
06/30/2019 (variables). A database of explanatory covariates was constructed, including land use and 
land cover, satellite image data (Landsat-8) and digital elevation model (SRTM). The values of variables 
and covariates were extracted into a grid of points and separated for three altimetric conditions, and the 
linear Gaussian Models (GLM) were applied to the point data. The most explanatory spectral covariates 
for the ET variation were Albedo and Surface Temperature. And the covariates related to topography 
were Digital Elevation Model and Topographic Moisture Index. In general, the wet period presents a 
higher ET rate (2.06 mm d-¹). Forests generated the highest ET regardless of period (1.62 mm d-¹ to 
4.03 mm d-¹). Elevated topography also influences the increase in ET in relation to the same lower 
altimetry classes (A2 and A3). This influence is associated with the altitude dynamics and intrinsic 
elements of the region, such as the marshy environment in the A3 region, where the highest ET values 
occurred. This work stands out from its peers for addressing the influence of landscape aspects on the 
knowledge of evapotranspiration variation, a vanguard theme in the scope of spatial analysis. 
Keywords: Remote Sensing, SAFER, GLM, and hypsometric regions. 
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Resumo 
A evapotranspiração (ET) é um elemento crucial na dinâmica espaço-temporal de umidade, energia e 
calor, e está relacionada a aspectos climáticos, pedogeomorfológicos e fitofisionômicos da paisagem. 
Portanto, estimar ET requer análise temporal dinâmica e integrada com fatores biofísicos da paisagem. 
O estudo teve como objetivo analisar o comportamento do ET por meio da análise do uso e cobertura 
do solo e da topográficas em série temporal. O modelo Algoritmo Simples para Recuperação da 
Evapotranspiração (SAFER) foi utilizado para obter a variável ET nos períodos de 21/01, 22/02, 13/05 
e 30/06/2019 (variáveis). Um banco de dados de covariáveis explicativas foi construído, incluindo uso e 
cobertura do solo, dados de imagem de satélite (Landsat-8) e modelo digital de elevação (SRTM). Os 
valores das variáveis e covariáveis foram extraídos para uma grade de pontos e separados para três 
condições altimétricas, e nos dados pontuais foram aplicados os Modelos Lineares Gaussianos (GLM). 
As covariáveis espectrais mais explicativas para a variação de ET foram Albedo e Temperatura da 
Superfície. E as covariáveis relacionadas à topografia foram Modelo Digital de Elevação e Índice de 
Umidade Topográfica. Em geral, o período úmido apresenta maior taxa de ET (2,06 mm d-¹). As 
Florestas geraram a maior ET independente do período (1,62 mm d-¹ a 4,03 mm d-¹). A topografia 
elevada também influencia no aumento do ET em relação às mesmas classes de altimetria inferior (A2 
e A3). Essa influência está associada à dinâmica de altitude e a elementos intrínsecos da região, como o 
ambiente pantanoso na região A3, onde ocorreram os maiores valores de ET. Este trabalho destaca-se 
dos pares por abordar a influência de aspectos da paisagem no conhecimento da variação da 
evapotranspiração, tema de vanguarda no âmbito da análise espacial. 
Palavras-Chave: Sensoriamento Remoto, SAFER, GLM e Regiões Altimétricas. 

 
 
INTRODUCTION 

Evapotranspiration (ET) is a crucial element in the space-time dynamics of humidity, energy, 
and heat. ET is a dynamic variable, and in addition to the temporal aspect, it is related to climatic, 
pedogeomorphological, and phytophysiognomic factors of the landscape ( MELESSE et al., 2007; 
ANDERSON et al., 2012; RUHOFF et al., 2013). ET data has applications in studies of environmental 
scenarios (WANG et al., 2013), hydrological models (IMMERZEEL; DROOGERS, 2008), and 
watershed management. However, some studies consider only the phenological and structural context 
as response covariable (SENAY, 2008; SACKS; KUCHARIK, 2011). 

Studies that address ET variation and landscape elements' association use radiation and energy 
balance methods (HEMAKUMARA; CHANDRAPALA; MOENE, 2003; KIPTALA et al., 2013; 
PÔÇAS et al., 2013). The disadvantage of this method is the need for many physical interactions, 
obtaining anchor pixels (SILVA; CASTRO TEIXEIRA; MANZIONE, 2019) and uncertainties in 
obtaining heat flows (especially sensible heat), with overestimates about field data (MARX et al., 2008; 
SCHERER-WARREN, 2012). Alternatively, the more directs and simplified models overcome this 
problem (SILVA; CASTRO TEIXEIRA; MANZIONE, 2019). In the last decade, the use of the Simple 
Algorithm for Evapotranspiration Recovery (SAFER) empirical model has grown; with efficiency in 
several ecosystems, covering the phenological variation of different phytophysiognomies, energy 
availability, temperature behavior and water maintenance in the environment through evapotranspiration 
(ALTHOFF et al., 2019; CASTRO TEIXEIRA et al., 2020; MUSSI et al., 2020a; SANTOS et al., 
2020b). 

In Brazil, the Cerrado Biome is an example of landscape heterogeneity, a determining factor for 
ET variation (ARANTES; FERREIRA; COE, 2016). The heterogeneity of the cerrado is evident in the 
state of Minas Gerais, as it places a condition of geodiversity, with the geology of the Archean and 
Phanerozoic ages, in the most diverse tectonic and metamorphic contexts, which they form sustain a 
pedogeomorphological diversity (SILVA et al., 2018). Besides, the geoecological arrangement of Minas 
Gerais results from the crossing of three biomes, with limits not well defined, configuring itself in 
several regions as a morphoclimatic transition domain (AB’SABER, 1970). In this scenario, the 
Pandeiros River Protection Area (EPA-RP) is inserted, with the presence of mosaics of natural 
vegetation cover and anthropic uses, object of interest to several researchers, aiming at understanding 
the physical context and the variables biophysical (LEITE et al., 2018a, 2018b; VELOSO; SILVA; 
FERREIRA, 2020a) above all evapotranspiration (SILVA et al., 2020). However, to understand the 
relationship between ET and covariable requires robust methods. 
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Applications of statistical approaches have been growing in the environmental context. For 

example, models based on multiple linear regressions of the Gaussian family is pointed out as an 
efficient approach (KARBASI, 2018; BOSQUILIA et al., 2019). The study aimed to analyze ET's 
behavior by land use and cover and the influence of topographic conditions in time series. 

 
MATERIALS AND METHODS 

 
Study Area 

 
The study area is the Environmental Preservation Area (EPA) of the Pandeiros River, located in 

the north of Minas Gerais, Brazil, between the coordinate pairs 15° 45' 0'' S and 45° 25' W and 14° 55' 
S and 44° 30' W (DATUM SIRGAS 2000) (Figure 1). The EPA of Pandeiros River is the most extensive 
in Minas Gerais (3900 km²) and covers the municipalities of Januária, Bonito de Minas, and Cônego 
Marinho (SANTOS et al., 2020a). 

The region's climate is Aw according to the Köppen classification, with colder periods between 
June and July (and warmer in October), with average (annual) temperature and precipitation of 26 °C 
and 1057 mm, and high water deficit. (NUNES et al., 2009; SANTOS et al., 2020a). Geomorphology 
has flat surfaces, depressions, and São Francisco plateaus (SANTOS et al., 2020a), at altitudes between 
447 to 859 m. The soils of the region are predominantly Dystrophic Oxisols (UFV; UFLA, 2010). 
Natural phytophysiognomy has a predominance of Savannas and Low Tree and Shrub Land. 

 

Figure 1 – Location of the Environmental Preservation Area (EPA) on the Pandeiros River, with 
hypsometric variations highlighted, in Brazil and Minas Gerais. 

 
Data sources and methodological procedures 

The methodological framework was divided in five stages: (i) Definition of hypsometric regions 
based on the altimetric amplitude existing in the EPA of Pandeiros River; (ii) organization of land use 
and Coverclasses, adapting to the reality of the study area; (iii) ET estimate based on the SAFER model; 
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(iv) elaboration of a database of spectral and topographic covariable; and (v) Statistical analysis with 
multiple linear regressions via GLM (Gaussian) between variable and covariables (Figure 2). 

 

Figure 2 – Flowchart of the processing steps. 
 

Evapotranspiration Modeling 

The ET estimation considered images from the Landsat-8 satellite OLI (Operational Terra 
Imager ) and TIRS (Thermal Infrared Sensor) sensors at 30 meters from UMM (Minimum mapping of 
the unit), with EPA climatic seasonality selection criteria and low cloud cover (dates: 01/21, 02/22, 
05/13, and 06/30/2019). The thermal images (TIRS sensor) have 100 meter UMM, so we performed the 
downscaling to 30 meters, in order to equalize with the OLI sensor images. 

January and February represent the rainy season, and May is the beginning of the dry season. 
The modeling was performed with the SAFER algorithm, which requires the visible, near-infrared, 
medium, and thermal wavelengths (TEIXEIRA, 2010). The conversion of digital levels to radiance and 
reflectance was applied using the QGIS software in the images. From this conversion, the Normalized 
Difference Vegetation Index (NDVI), surface albedo (α), and Surface Temperature (ST) were calculated 
(SILVA; MANZIONE, 2018). The data (NDVI, α, and ST) were used together with the coefficients a 
and b (1.8 and -0.008, respectively) to estimate the ratio (ETf) of actual evapotranspiration (ETc) and 
reference evapotranspiration (ETo) (TEIXEIRA, 2010) (Equation 01). 

 
𝐸𝑇𝑓	=	exp[𝑎	+	𝑏	(	 )]	 (Equation 01) 

𝝰∗NDVI	
	

The ETf is used with an aim similar to the Kc (Crop Coefficient) of FAO (Food and Agriculture 
Organization) to understand vegetations water needs. ETf is the representation of Kc multiplied by Ks 
(stress coefficient), which in conditions of absence of stress, Ks would assume a value equal to 1. For 
these conditions, ETf is similar, or equivalent to Kc. In physical terms, the insertion of NDVI in the 
calculation is to understand the vegetations vigor, the albedo represented the energy availability of the 
environment, and the ST shows the humidity status of the environment (VENANCIO et al., 2020). The 
modeling was done using the R software, raster, rgdal, and water packages (TEAM, 2016). 

Based on the ETf and ETo measured at the Januária meteorological station inserted in the study 
area, the Actual Evapotranspiration (ET) was obtained for each analysis period (Equation 02). 

 
𝐸𝑇	=	𝐸𝑇𝑓	×	𝐸𝑇𝑜	 (Equation 02) 

Definition of Altimetric Regions 
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Evapotranspiration is affected by heterogeneous surface characteristics, including topography 

(TEIXEIRA et al., 2020). ETo varies according to air temperature (LENKA et al., 2020), directly related 
to altitude, with a decrease of ~ 0.65 °C every 100 meters (TUBELIS; NASCIMENTO, 1980), based on 
this premise, in the study area, every 171.8 meters, there is a decrease of ~1 °C in the air temperature. 
Assuming that air temperature variation occurs concerning altitude, the study area was separated into 
three altimetric zones using Digital Elevation Model (DEM - SRTM) with 30 m of spatial resolution. 

 
Land Use and Land Cover 

The limits and areas of the land use classes derive from the 2018 land use map, with a UMM of 
30 meters (MAPBIOMAS, 2018). The main classes are Low Tree and Shrub Land, Annual Culture, 
Forest, Non-Vegetation, Pasture, Savanna, and Urban. The classes of urban and non-vegetation areas 
are not present, the first has low expression, and the second is susceptible to regeneration. With prior 
knowledge of the study area, it was observed that the Palm Swamp Vereda is inserted in forests and 
savannas, so Palm Swamp Vereda was vectorized with images from WorldView II (50 cm UMM) and 
were integrated into the mapping. 

 
Database of covariable 

The data includes nine prediction covariable (5 spectral and 4 topographic) (Table 1). The 
spectral products are α (Surface Albedo), EVI2 (Enhanced Vegetation Index), NDBI (Normalized 
Difference Built-Up Index), MSI (Moisture Stress Index), and surface temperature. Albedo is the ratio 
of incident and reflected solar radiation, comprising ranges from visible to medium infrared (BONAN, 
1997). EVI2 is an improved vegetation index with high sensitivity to variations in biomass in vegetation 
(JIANG et al., 2008), and phytophysiognomic variety present in the region. The surface temperature 
was used to show the thermal field for each use and land cover, as the thermal field is influential in the 
dynamics of evapotranspiration (RAOUFI; BEIGHLEY, 2017). NDBI is typically used to describe the 
density of areas built in a geographical area (ZHANG; ODEH; HAN, 2009). However, observing its 
calculation structure, there is a normalization of the medium and near-infrared (XIONG et al., 2012), 
which can be used to observe variations in vegetation cover. MSI is used to demonstrate the humidity 
condition in the environments (COHEN, 1991). The indexes were generated using the R software. 

Table 1 - Predictor covariable used as input to the model. 
Abbreviation description Sources 
α Surface Albedo Teixeira et al., (2010) 
EVI2 Enhanced Vegetation Index 2 Jiang et al., (2008) 
NDBI Normalized Difference Built-Up Index Zha et al., (2003) 

MSI Moisture Stress Index 
Datt e 
Ravallion (1990) 

ST Surface Temperature Teixeira et al., (2010) 
DEM Digital Elevation Model SRTM (2000) 
SLOPE Slope Evans (1998) 
DAH Diurnal Anisotropic Heating Böhner e Antonić 2009 

TWI Topographic Wetness Index 
Beven and Kirkby 
(1979) 

 
The topographic products from the SRTM-DEM were: hypsometry, SLOPE, DAH (Diurnal 

Anisotropic Heating), and TWI (Topographic Wetness Index). These products were generated at SAGA 
GIS (CONRAD et al., 2015). The hypsometry was used to represent the altimetric variation for each 
land use because it plays an intrinsic role in wind circulation and water vapor diffusion (MORTENSEN; 
PETERSEN, 1998). The SLOPE presented in percentage indicates the characteristics of the surface, 
mainly in terms of its slope. Together with the altitude, the slope is an essential factor in the dynamics 
of evapotranspiration. The DAH represents heating in different positions of the relief, in the southern 
hemisphere, faces oriented to the north tend to have higher values of radiation and temperature 
(CRISTEA et al., 2017). TWI indicates water accumulation potential in the soil, considering the terrain's 
slope (PETROSELLI et al., 2013). As the work was carried out in a region with a physically varied 
landscape, this index could explain evapotranspiration. 
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Statistical Analysis 

For statistically sufficient sampling for the EPA area, 10.790 points were distributed following 
Chuvieco and Huete (2009) recommendations. A minimum spacing of 30 meters between the samples 
was defined, considering the spatial resolution of the Landsat-8 image, obtaining the land use classes 
and covariate values per point. Statistical analysis was applied to observe which covariable are most 
important in explaining ET. The multiple linear regression model GLMs (Generalized Linear Models) 
of the Gaussian family was considered. It is a process applied in several environmental studies 
(ROLETT; DIAMOND, 2004; ZEPPETELLO et al., 2020), in which the Gaussian process considers 
that observations occur in a continuous domain (time or space), each point in space is associated with a 
random variable with a normal distribution (REYNOLDS, 2009). These premises are suitable for the 
study due to the sample distribution of points in the region. A complete model was built with the nine 
predictor variables (Equation 3) for each use and land cover in altimetric areas. 

 
𝑴𝒐𝒅𝒆𝒍	 <	−	𝑔𝑙𝑚(𝐸𝑇	~𝛼	+	𝐸𝑉𝐼2	+	𝑆𝑇	+	𝑁𝐷𝐵𝐼	+	𝐷𝐴𝐻	+	𝑆𝐿𝑂𝑃𝐸	+	𝑀𝐷𝐸	+	𝑇𝑊𝐼	+	
𝑀𝑆𝐼,	𝑓𝑎𝑚𝑖𝑙𝑦	 =	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛)	 (Equation 3) 

The beckward function was applied to eliminate non-significant variables with the AKAIKE 
(AIC) criteria (NAIK; SHI; TSAI, 2007). The model's efficiency test considered the effect of 
multicollinearity between covariable using the VIF (Variance Inflation Factor) function. In the initial 
model, covariable with VIF > 5 was removed, forming a new model, with repetition in the search for 
the ideal model with all covariates with VIF <5 (YU; JIANG; LAND, 2015). Excellent models were 
obtained for each use and land cover analyzed after this application, totaling 60 models. 

 
RESULTS 

 
Land Use and Cover by Altimetric Region 

In general, there is a predominance of Savannas (arboreal and shrub-herbaceous strata) in all 
regions. The Low Tree and Shrub Land, and Forest formations predominate in the A1 altimetric region, 
with 65, 21, and 7% of the areas, respectively (Figure 3). In the west region, there is a concentration of 
Annual Crops (~ 3%). The pasture has a spatial distribution pattern, with proximity to forests, especially 
those bordering water bodies, similar to previous studies in EPA (DIAS; MOSCHINI; TREVISAN, 
2017). In the A2 region, the Savannas class (~ 50%, 15% less than region A1) predominates, followed 
by the Low Tree and Shrub Land (16% higher than region A1) and Pastures with 37% and 5%, 
respectively. Most of the Palm Swamp Veredas are concentrated in this region, with ~64.30 km2 (51.35 
km² or 78.86% higher than in the A1 region). In the A3 region, Savannas occupy the largest share (59%), 
followed by Pastures and Forests, both with ~ 17%. 
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Figure 3 - Spatial distribution of land use and Cover in the Pandeiros River EPA, Minas Gerais. 
Spatio-temporal distribution of ET 

The wetter period represents higher rates of ET. In this period, the amplitude is 10.24 mm d-¹. 
The highest values occur in the areas bounded by forests (Figure 4). Even in the dry season (with water 
restriction), these areas have the highest ET values (2.6 to 7.89 mm d-¹). For all periods, there is a trend 
of lower ET values (0 to 1.25 mm d-¹) occurring in the central, western, and northern portions of the 
EPA, areas with a predominance of Low Tree and Shrub Land. The other extensions of the EPA 
intermediate values were predominant (0.85 to 3.07 mm d-¹), mainly due to the Cerrado areas spatiality. 
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Figure 4 - Spatio-temporal distribution of ET at the Pandeiros River EPA on 01/21, 02/22, 05/13, and 
06/30 2019. 

The average ET values for the A1 region for 01/21, 02/22, 05/13, and 06/30 were 1.71, 2.00, 
1.22, and 1.84 mm d-¹, respectively. In the A2 region, the average values were 1.93, 2.26, 1.15, and 1.52 
mm d-¹, for 01/21, 02/22, 05/13, and 06/30, respectively. For region 3, ET averages 01/21, 02/22, 05/13, 
and 06/30 were 2.40, 2.80, 1.44, and 1.51 mm d-¹, respectively. The highest ET values were defined for 
the Forest areas. In general, the ET means of region 3 is higher than the other regions (1 and 2). 

 
Covariables Selected to Explain ET by GLM (Gaussian) Model 

The methodology created 60 models for each covariate (nine), and the low Akaike criterion is 
the best model (ASPINALL, 2004). All covariables in the database were related to some of the models 
(Table 2). The spectral and topographic matrix covariable were efficient in the model combinations in 
all altimetric regions. 

 
Table 1 - Models selected by land use and land cover in regions 1, 2, and 3, for the periods from 01/21, 
02/ 22, 05/13, and 06/30 in the EPA of Pandeiros River.  

REGION 
A1 

LU/LC 01/21 02/22 05/13 06/30 
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Low Tree and Shrub 
Cerrado 

α, ST, DAH, 
MDE 

α, DAH, 
MDE α, ST, MDE α, EVI2, ST, 

DAH, MDE 
Annual Croplands α α α, EVI2 α, ST 

Forest MDE ST, DAH, 
SLOPE 

α, ST, EVI2, 
DAH α, ST, SLOPE 

Pastureland ST α, EVI2, 
MDE, TWI ST, TWI ST 

Savanna EVI2, ST, 
MSI α, EVI2, ST α, EVI2, ST α, ST 

Palm Swamp Veredas ST, SLOPE ST α, ST, DAH, 
MDE, TWI 

α, EVI2, ST, 
TWI 

  REGION 
A2 

  

LU/LC 01/21 02/22 05/13 06/30 
Low Tree and Shrub 
Cerrado EVI2, ST α, EVI2, ST α, EVI2, ST, 

NDBI α, EVI2, ST 

Forest α, ST α, EVI2, ST, 
MSI 

α, EVI2, ST, 
MDE 

EVI2, ST, 
MDE 

Pastureland α, EVI2, ST α, ST, MDE, 
TWI 

ST, DAH, MDE α, ST 

 
Savanna α, ST, DAH 

α, EVI2, ST, 
DAH, 

SLOPE 

α, EVI2, ST, DA, 
MDE 

α, ST, DAH, 
SLOPE, MDE 

Palm Swamp Veredas ST, MDE α, ST, MDE ST, TWI ST, DAH, 
MDE 

  REGION 
A3 

  

LU/LC 01/21 02/22 05/13 06/30 
Low Tree and Shrub 
Cerrado 

α, NDBI, 
MSI 

EVI2, ST, 
MDE EVI2, ST, MDE ST, MDE 

Pastureland ST, TWI ST ST, MDE α, ST 

Forest α, ST α, EVI2, ST, 
NDBI, MDE 

α, EVI2, NDBI, 
MDE, TWI EVI2, ST 

Savanna ST, MDE ST, MDE α, EVI2, ST α, ST, DAH 
Source: Landsat 8 and SRTM. ST: Surface Temperature, α: Surface Albedo, EVI2: Enhanced 
Vegetation Index 2, MSI: Moisture Stress Index (Landsat Dataset), Slope, MDE: Digital Elevation 
Model, DAH: Diurnal Anisotropic Heating, TWI: Topographic Wetness Index (SRTM Dataset). 

 
Evapotranspiration by Land Use and Cover by Altimetric Regions 

In region A1, the wet period corresponding to January and February in 2019, the highest ET 
rates occurred in Forests, while the lowest was in Low Shrub and Land areas (Figure 5). This pattern 
was maintained in the dry period (05/13). In the following month (06/30), the lowest rate of ET was in 
areas of Annual Crops, while Forests have a high standard of ET. 

In all periods in the A2 region, the highest ET values occurred in the Forest areas (Figure 5); on 
the other hand, the Low Tree and Shrub Land have the lowest ET values during most of the period. In 
region A3, following the trend of other altimetric regions, forests have higher rates of ET (Figure 5). 
For the periods from 01/21, 02/22, and 05/13, the lowest values occurred in the areas of Low Tree and 
Shrub Land. Although this trend occurs, in region A3, on 06/30, the lowest rate of ET was registered in 
Pastures. In the general trend for land uses and land cover in the regions, ET values peak on 02/22, with 
a steep decline on 05/13. 
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Figure 5 - Evapotranspiration by land use and cover, and Altimetric Regions, in the periods from 01/21, 
02/22, 05/13 and 06/30 2019. 

The classes of land use and cover in region A3 (with lower altimetric levels) showed higher ET 
values than the other regions in most of the periods analyzed (Figure 6). 
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Figure 6 - Evapotranspiration of Land Uses and Cover in Altimetric Regions 1, 2, and 3, on 01/21, 
02/22, 05/13, and 06/30, at the Rio Pandeiros EPA. 

 
DISCUSSION 

Relationship between ET and covariables of land use and land cover 

The altimetric condition as a climatic condition did not influence ET rates. But how the 
landscape layout influenced it, especially providing the highest ET rates for the areas with the lowest 
altimetric levels (region 3). Region 3 comprises a swampy environment, with high water availability in 
the soil, due to the water table's proximity to the soil surface. This influence is evident when observing 
the predominance of topographic indices in explaining the ET for this region, mainly the TWI (Table 
2), an aspect that influences ET in the study area (VELOSO; SILVA; FERREIRA, 2020a). This water 
availability promotes the supply of the physiological needs of vegetation, maintaining the highest ET 
levels compared to other regions, in which sandy soils are predominant (NUNES et al., 2009) and with 
low water availability. 

Regarding land use, in the Low Tree and Shrub Land, the ET rate was low (regions A1 and A3), 
and spectral covariable was predominant in the models. The most relevant spectral covariables were 
albedo and ST, as they are part of the SAFER algorithm (TEIXEIRA, 2010). In this class, the ST and 
Alb present high values due to the phenological design, with short stature and discontinuous canopies, 
maintaining soil exposure and rocky material (EITEN, 1972). Therefore, incident solar radiation 
overheats the surface, intensifying the sensible heat exchange between the soil surface and the air layers 
(LOPES; SILVA; PENHA PACHECO, 2014). Nevertheless, these areas play a crucial role in the 
climate context despite the low ET. Simultaneously, short-wave radiation is reflected with greater 
intensity, increasing the reflection coefficient, making these open environments key in energy dynamics 
as they release energy from the system (VELDMAN et al., 2019). 
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The topographic covariables, DEM and slope were more significant to explain ET variation in 

forests. This aspect is related to the arrangement of forests in the landscape. Riparian forests occurred 
in flat environments, with proximity to water bodies, easy access to underground water, and high 
evapotranspiration dynamics even in dry periods. The closed and continuous canopy enables more 
extensive interception of solar radiation and conversion to latent heat fluxes (CIRELLI; PENTEADO- 
DIAS, 2003), providing a high ET rate. 

Forests class also involves dry forests, which develop in sloping environments, under Karst 
relief areas (MELO et al., 2013), and this physical characteristic infers the phenological dynamics of the 
vegetation. In dry periods, there is a loss of ~ 95% of the leaves (FONSECA et al., 2018), moderating 
the exchange of energy with the atmosphere (RANKINE et al., 2017) and ET rates (VELOSO; 
FERREIRA; SILVA, 2017); therefore, the dry forest is an essential phytophysiognomy for water 
management in a region. They avoid excessive water loss, maintaining water availability in the soils 
deepest layers, being necessary for environmental management plans. 

The spectral covariable (ST and EVI2) also contributed to explaining ET variation in the forest 
domain. In wet periods, EVI2 values in the Forest class are high (JIANG et al., 2008), which decreases 
albedo and ST, and increases energy availability for the vegetation's metabolic processes, especially 
evapotranspiration. In dry periods, with a decreasing trend of EVI2 (NEVES et al., 2016), there is a 
significant loss of energy by albedo, keeping less energy available, and the remaining balance on the 
surface is used for heating the air due soil moisture conditions (LARSON et al., 2009). 

In Savannas, ST, Albedo, EVI2, and MSI explained ET. The temperatures in these environments 
are usually high, depending on vegetation characteristics (herbaceous and deciduous, spaced) 
(SANTOS; FERREIRA; FERREIRA, 2011) allowing the direct incidence of solar radiation on the soil 
matrix, causing the diffusion of sensitive heat to heat the air. These characteristics also lead to more 
significant energy losses due to albedo, especially forested areas, which tend to decrease ET rates. 

EVI2, in these environments, tends to be higher in the wetter periods, providing an increase in 
the ET rate and lower dry periods (NEVES et al., 2016). The MSI stood out in the wetter period (02/22), 
related to rain occurrence. This index reflects soil moisture conditions, as it comprises vegetation stress 
(COHEN, 1991), a latent heat flow diffusion controller (LEI et al., 2018), responsible for the high rates 
of ET. The DEM and the slope for these areas represent their position in the landscape, as in the other 
classes. In most cases, the DAH in the Savannas areas was equal to zero, indicating no daytime heating 
and maintaining the ET rates. 

In Palm Swamp Veredas, there was a predominance of topographic variables (DEM, SLOPE, 
DAH, and TWI). Palm Swamp Veredas occur in flat areas, influenced by the Groundwater confined by 
low permeability rocks (ALENCAR-SILVA; MAILLARD, 2011), a factor that determines the soil 
moisture demand in these environments for most of the year. Veloso, Silva, and Ferreira (2020) analyzed 
the energy balance in Palm Swamp Veredas at EPA Pandeiros River and found a relationship between 
the ET and TWI rates, corroborating our results. 

From the spectral covariables, ST and Albedo were the predominant ones in explaining ET for 
Palm Swamp Veredas. ST and albedo maintain low values compared to other types of vegetation in the 
Cerrado (VELOSO; SILVA; FERREIRA, 2020b), providing high ET (SILVA et al., 2020). Palm 
Swamp Veredas have discontinuous canopies, facilitating the circulation of winds and increasing water 
vapor flows. These areas play an essential role in the Brazilian Cerrado region, as they are genetic banks 
of animal species, have a rich flora, supply water bodies in the biome. 

Among anthropic use classes, such as Annual Croplands the ET was explained predominantly 
by spectral covariables (albedo, ST, and EVI2). In the rainy periods (01/21 to 02/22), crop production 
increases, favoring the interception and absorption of incident solar radiation and reducing the loss of 
surface energy by albedo (SANTOS et al., 2017). In the rainy periods ~80% of the absorbed energy is 
converted into sensitive heat flow flows (BEZERRA et al., 2014). 

The ET variation influences the plants phenological cycle, with ET rates decreasing sharply in 
less rainfall (between 05/13 and 06/30), and EVI2 represents this dynamic. The biomass in these 
environments tends to decrease (ALAM; LAMB; RAHMAN, 2018) due to scarce water availability and 
harvest period, which leads to lower ET rates (RUHOFF et al., 2012). In this period, the albedo was an 
explanatory variable of ET, with an inverse role compared to wet periods (01/21 and 02/22), which is 
associated with a decrease in the senescence period ET rates (MUSSI et al., 2020b). Senescence also 
influences ST, keeping its values high (CAIONI et al., 2020) and decreasing ET rates. Annual Croplands 
are essential for the regions economic context. Still, considering the behavior of ET, conversions of 
natural areas for this class increases surface temperature (SILVÉRIO et al., 2015), because of excessive 
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loss of energy through albedo (COSTA et al., 2007), sharp drops in ET rates (LATHUILLIÈRE et al., 
2018) and humidity of the adjacent atmospheric layers (QIU et al., 2011). 

In the Pasture areas, ST, Albedo, and in the topographic indices, TWI and DEM predominated 
to explain ET. In rainy periods, pastures have high biomass levels (VELOSO et al., 2020); this is 
associated with their direct contact with the water in the soil layers. When the incidence of radiation is 
considered constant in these environments, there is a decrease in the reflection coefficient (SILVA; 
MANZIONE, 2018). With low albedo values and high biomass levels, surface radiation is used more 
efficiently in transferring water to the atmosphere through ET (SILVA et al., 2020). ST for these areas 
is high (CAIONI et al., 2020), inferring ET dynamics (with a decrease). As in the other classes, the DEM 
represents the position of use of the landscape. The pastures are concentrated in low altimetric levels 
and flat relief, which provides water availability, mainly considering that the TWI is among the 
explanatory variables. 

From a seasonal point of view, there is a decrease in ET rates in dry periods in pastures, with a 
tendency for pasture areas (BRITO et al., 2018; VELOSO et al., 2020). Pastures in the general context 
of livestock play an essential role in the Brazilian economy, representing 31% of Gross Domestic 
Product (GDP), placing Brazil the second-largest meat exporter in the world (VELOSO et al., 2020). 
However, studies show that pastureland has some degree of degradation (PEREIRA et al., 2018), which 
changes the hydrothermal dynamics of a region, mainly resulting in a decrease in ET rates (ANDRADE 
et al., 2016) and water availability in the soil. 

As can be seen, evapotranspiration obtained a particular variation for each use and land cover 
under different altimetric conditions, being explained by spectral and topographic variables in the 
Pandeiros River EPA. 

 
Conclusions 

Evapotranspiration for the study area showed seasonal patterns, with the highest values 
occurring in the rainy season (02/22) and the lowest values in the dry season (05/13) of 2019. Among 
the land uses, Forests have the highest ET values for all topographic regions, being a vital climate 
controller, moistening the surface, and transferring the latent heat to the adjacent atmosphere. 

Spectral and topographic sets were useful in explaining evapotranspiration using multiple GLM 
(Gaussian) regressions. With the selection of covariables consistent with the literature for all uses and 
land cover. 

Intrinsic characteristics of the study area, such as the Pantanal environment in region 3 or the 
presence of wetlands, both with greater availability have high rates of ET in dry and wet periods. 
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