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Nonlinear dynamical systems seen through the scope of the Quasi-polynomial theory
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A unified theory of nonlinear dynamical systems is presented. The unification relies on the Quasi-
polynomial approach of these systems. The main result of this approach is that most nonlinear
dynamical systems can be exactly transformed to a unique format, the Lotka-Volterra system.
An abstract Lie algebraic structure underlying most nonlinear dynamical systems is found. This
structure, based on two sets of operators obeying specific commutation rules and on a Hamiltonian
expressed in terms of these operators, bears a strong similarity with the fundamental algebra of
quantum physics.
From these properties, two forms of the exact general solution can be constructed for all Lotka-
Volterra systems. One of them corresponds to a Taylor series in power of time. In contrast with
other Taylor series solutions methods for nonlinear dynamical systems, our approach provides the
exact analytic form of the general coefficient of that series. The second form of the solution is given
in terms of a path integral. These solutions can be transformed back to solutions of the general
nonlinear dynamical systems.

Keywords: Nonlinear systems.

I. INTRODUCTION

This series of two lectures was dedicated to the Quasi-
polynomial (QP) approach to the theory of Nonlinear
Dynamical Systems, i.e. systems of nonlinear ordinary
differential equations that frequently appear in mathe-
matical models in Physics, Chemistry, Biology and other
scientific disciplines.

Though a great diversity of dynamical systems are used
in scientific modelling, most of them can be cast in the
form of systems of ordinary differential equations with
polynomial or, more generally, quasi-polynomial nonline-
arities. The latter are linear superposition of monomials
with exponents that can be non-integers, real numbers.
These monomials represent the interactions between the
entities that are represented by the dynamical variables.

The Quasi-Polynomial approach relies on a special no-
tation for writing the quasi-polynomials that appear in
the vector field of a given dynamical system. Using that
notation it is possible to show that any quasi-polynomial
dynamical system can be exactly transformed to a Lotka-
Volterra (LV) system of differential equations. This pro-
perty reduces the task of solving, completely or partially,
nonlinear dynamical systems to the task of solving the
corresponding LV systems. Solving a LV system amounts
to solve the infinite set of QP systems that are equivalent
to that LV system.
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We, thus, focus on the LV systems. Being a particu-
lar form of quadratic systems, they represent in fact the
lowest degree of nonlinearity. We find an abstract Lie
algebraic structure underlying these systems. A Hamil-
tonian is shown to generate the time evolution of any
given LV system. We give three explicit realizations of
the LV algebra. One of them is implemented with boson
creation-destruction operators. In this framework, the
Hamiltonian is expressed in terms of creation-destruction
operators but is not Hermitian. Another realization leads
to the Liouville partial derivative equation that repre-
sents the conservation of the probability density norm.
This equation describes the time evolution of the proba-
bility density when the initial condition of the LV system
is only known in probability. The abstract Lie algebraic
of LV systems is then compared with that of linear sys-
tems. It can be seen that the difference between the two
types of systems lies essentially in the different Hamilto-
nians that generates them.

Finally, we show that two forms of the exact general
solution can be constructed for LV systems. They are
based on two different realizations of the abstract LV al-
gebra. One form of the solution is given in terms of a
Taylor series in power of time. In contrast with other
Taylor series solutions methods used for nonlinear dyna-
mical systems, here we find the exact analytic form of
the general coefficient of that series. The second form
of the solution is given in terms of a path integral quite
similarly with quantum field theory.

Finally, there remains an important open question:
What happens to these solutions when the dynamical
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system is in a chaotic regime?
This work results from a long-standing collaboration
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Victor Fairén (UNED, Madrid), Benito Hernández-
Bermejo (URJC, Madrid) and Rubén Diaz-Sierra
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II. LECTURE 1

A. Linear versus nonlinear dynamical systems

Dynamical systems are everywhere. They appear in:

Classical mechanics: Newton or Hamilton equati-
ons Fluid dynamics: Fourier modes of Navier-Stokes eqs
Plasma physics and nonlinear optics: Coupled waves eqs

Electronics: Kirchhoff equations of circuits Chemistry:
Rate equations for chemical reactions Biology-Ecology:
Populations dynamics equations Economy: rate equati-
ons for economic variables

Their general form is:

dX1

dt
= f1(X1(t), ..., Xn(t))

dX2

dt
= f2(X1(t), ..., Xn(t))

...
dXn

dt
= fn(X1(t), ..., Xn(t)) ,

where the variable t is time and where the functions
fi(X1, ..., Xn) represent the interactions between the
variables . Let us compare the main features of linear
and nonlinear dynamical systems (DS):

1. Linear DS:

ẋi =

n∑
j=1

Lijxj i = 1, ..., n , (1)

with ẋi = dxi/dt and where L is a constant real nxn
matrix.

The system of equations (1) is form-invariant under
linear transformation:

x
′

i =

n∑
j=1

Tijxj i = 1, ..., n . (2)

Indeed, transformation (2) acting on equation (1) leads
to:

ẋ
′

i =

n∑
j=1

L
′

ijx
′

j i = 1, ..., n , (3)

with:

L
′

= T ◦ L ◦ T−1 , (4)

where ◦ denotes the matrix product. Form-invariance
means that equation (1) and its transformed version (3)
have the same linear shape. The only difference is that
the two matrices L and L’ are different but they are re-
lated though relation (4).

The interest of this property is that one can find a
particular matrix T that put L’ into diagonal or Jordan
form. From this one can easily get the general solution to
equation (1). This is the origin of the efficiency of linear
algebra in solving linear dynamical systems like (1).

2. Nonlinear DS:

ẋi = fi(x1(t), ..., xn(t)) i = 1, ..., n . (5)

In contrast to the above linear DS, no general analytic
method for solving equations (5) was until now availa-
ble. This is due to infinite diversity of functional de-
pendence that can have the nonlinear functions . As
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a consequence, no form-invariance property similar to
the above for linear DS was known before the advent
of the quasi-polynomial theory presented in the sequel
of this article. The unavailability of a general solution
for most nonlinear DS led to the development of qua-
litative methods and approximation techniques such as
linear stability analysis, bifurcation theory, Lyapunov ex-
ponents and the theory of chaotic attractors, numerical
integration.

One should also keep in mind that most linear DS in
scientific models are approximations of nonlinear DS.

B. Examples of nonlinear DS:

The asymmetric Euler top and also the three waves
model in plasma physics, hydrodynamics and nonlinear
optics:

ẋ1 = −a1x1 + µx2x3

ẋ2 = −a2x2 + βx1x3 (6)

ẋ3 = −a3x3 + γx1x2 .

The Lorentz model was derived from the Fourier modes
transformation of the hydrodynamic equations of thermal
convection:

ẋ1 = σ(x2 − x1)

ẋ2 = ρx2 − x2 − x1x3 (7)

ẋ3 = x1x2 − βx3 .

The above models have nonlinearities that are at most
quadratic but many other models, for example some che-
mical reaction rate equations, have nonlinearities with
higher degree monomials or even non-integer degree mo-
nomials, i.e., quasi-monomials.

C. Quasi-Polynomial (QP) notation of dynamical
systems

Any dynamical system with polynomial nonlinearities
of integer or non-integer degrees can be written in the
following manner [1]:

ẋi = αixi

N∑
j=1

Aij

n∏
k=1

x
Bjk

k i = 1, ..., n , (8)

where:

• the coefficients Aij are real constant entries of a
n×N rectangular matrix A

• the exponents Bij are real constant entries of a N×
n rectangular matrix B

• the i are real constant components of a n dimensi-
onal vector

• n is the dimension of the DS (8)

• N is the total number of different (quasi-) monomi-

als of form
∏n
k=1 x

Bjk

k .

It should be stressed that any polynomial or quasi-
polynomial function can be written in the form of the
right-hand-side of equation (8). This is due to the fact
that the pre-factor xi in the right-hand-side of (8) can be
absorbed by a factor x−1

i that can appear in some mo-

nomials
∏n
k=1 x

Bjk

k depending on the particular form of
matrix B.

In fact, equation (8) is a way to introduce a novel no-
tation, the so-called quasi-polynomial notation, that per-
mits to define the above matrix A of coefficients and the
matrix B of exponents appearing in equation (8). As we
show below, these matrices play a fundamental role in
the quasi-polynomial theory of nonlinear DS.

D. Examples of dynamical systems written in the
QP notation

• The Euler asymmetric top (or three-waves model)
(6) given above can be written in the QP notation
(8) with:

A =

µ 0 0
0 β 0
0 0 γ

 B =

−1 1 1
1 −1 1
1 1 −1

 α =

−a1
−a2
−a3

 .

(9)

This is an example where, due to the particular
form of matrix, the pre-factor xi disappears due to
cancellation with the inverses of these monomials.
Here A and B are square matrices.

• The Lorenz system (7) takes the QP form (8) with:

A =

1 0 0 0
0 ρ −1 0
0 0 0 1

 B =


−1 1 0
1 −1 0
1 −1 1
1 1 −1

 α =

−σ
−1
−β

 .

(10)

Obviously, here A and B are rectangular matrices.

E. Quasi-monomial transformations

The quasi-monomial transformations are defined by:

Ẋi =

n∏
k=1

X
′Cjk

k i = 1, ..., n , (11)

where the real constant exponents Cik constitute a square
nxn matrix C. This matrix must be invertible. To
each matrix C of GLn(R) corresponds one such trans-
formation. The set of all these transformations forms a
group under the composition product that is isomorphic
to GLn(R). More precisely, to avoid singularities, we res-
trict our scope to equations (8) for which the variables
xi(t) remain in the positive orthant.
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Clearly, transformation (11) is a linear relation, ex-
pressed with matrix C, between the logarithms of the
new and old variables xi and x

′

i. This particular role of
the logarithm of the variables is related to the pre-factor
xi appearing in the QP format (8). Dividing the two si-
des of equation (8) by the pre-factor permits, indeed, to
re-write (8) with the logarithmic time derivative of xi.
This fact plays a fundamental role in the QP theory.

Transformation (11) brings equation (8) into:

ẋ
′

i = α
′

ix
′

i

N∑
j=1

A
′

ij

n∏
k=1

x
′B
′
jk

k (12)

with :

α′ = C−1 ◦ α
A′ = C−1 ◦A (13)

B′ = B ◦ C ,

where ◦ is the matrix product.
A comparison between equations (8) and (12) shows

the form-invariance of the former under transformations
(11). This bears some analogy with the form-invariance
of the linear DS under linear transformations we menti-
oned above. However, in contrast with the latter, this
does not lead to any general diagonalization or Jordan
form for system (12). Transformations (13) are, conse-
quently, less powerful than the linear transformations for
linear DS.

However, the transformations (11) and (13), lead to
a new and important result. By choosing a particular
matrix C for the transformation (11), the QP system
(12) is shown to reduce to a Lotka-Volterra system as we
show in the next chapter. This, in turn, brings a wealth
of new results on the original system (8).

F. Transformation of QP systems into
Lotka-Volterra (LV) canonical form

Let us start with the demonstration for the particular
case of QP systems (8) with n = N , i.e., systems where
the number N of independent monomials is equal to the
dimension n of the system. Such systems are, of course,
by no means general but the proof of their transformation
to the LV form is quite easy. The general case with is
similar but needs a preliminary embedding or projection
as we shall discuss after proving the case .

So, let us first consider the system with N = n:

ẋi = αixi

n∑
j=1

Aij

n∏
k=1

x
Bjk

k i = 1, ..., n . (14)

In this case the matrix B of exponents is a square matrix
(A is also square). Let us, furthermore, assume that B is
invertible. We, then, perform on (14) a particular quasi-
monomial transformation (11) with C = B−1. Inserting

this form of C in equations (13) we see that:

α′ = B ◦ α = λ

A′ = B ◦A = M (15)

B′ = B ◦B = I .

The transformed system (12), thus, becomes in this case:

ẋ
′

i = λx
′

i + x
′

i

N∑
j=1

Mijx
′

j i = 1, ..., n . (16)

Due to the last equation of (15), B′ = I, the monomi-
als in the transformed form of (14) are reduced to just

the variables x
′

i themselves. Thus, the transformed ver-
sion of (14) becomes the equation (16) that contains only
particularly simple quadratic nonlinearities.

Expression (16) is precisely the form of the so-called
Lotka-Volterra dynamical systems [2, 3]. The constant
coefficient Mij describes the interaction between the va-

riables x
′

i and x
′

j . The Mij constitute the entries of a n x
n square matrix M that is given by M = B ◦ A, i.e., the
matrix product of the exponents matrix and the coeffici-
ents matrix of the original QP system (14). Similarly, the
new coefficients of the linear term in (16) are the com-
ponents of the vector λ = B ◦ α where α is the vector of
coefficients of the linear term in the original system (14).

A remarkable feature is that the quite general nonli-
nearity of equation (14) is reduced to the simplest form
of quadratic nonlinearity in (16). A wealth of mathema-
tical results on the LV equations exists in the literature
(see for example [2, 3]). These results can be transferred
to all the QP systems that are equivalent to a given LV
system by performing the inverse of the transformation
(11). Among them are many stability properties that can
be deduced from the existence of a Lyapunov function for
the LV systems.

Furthermore, all the systems having matrices A, B and
vector α such that their product B ◦ A and B ◦ α are
identical, transform into the same LV system. We can,
thus, say that they are all equivalent. They constitute
an equivalence class. Since the transformation (11) with
C = B−1 is a diffeomorphism, we know that the trajec-
tories of all these systems in phase-space are transformed
by a diffeomorphism into the trajectories of the corres-
ponding LV system. Hence, we can state the proposition
that the set of all QP dynamical systems is divided into
equivalence classes that are, each, characterized by one
canonical member, the LV system. Let us stress that
since most nonlinear dynamical systems can be brought
to the QP form [4], this proposition is quite powerful.

For the more general systems (8) with n 6= N we refer
for more details to the article [5] where the demonstration
of the transformation to the LV format has been given
for all the three cases. However, as a summary we can
say the following. For systems with N > n, one must
first add N − n new variables to the system (8). These
variables obey:

dXr(t)

dt
= 0 r = n+ 1, .., N , (17)
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with initial conditions xr(t) = 1. Hence, these new va-
riables are constant and equal to 1. Arbitrary powers of
these (N-n) variables, Xr(t), r = n + 1, .., N still equal

to 1, can be multiplied with the monomials
∏n
k=1X

Bjk

k
that appear in (8). The previous monomials can, thus,

be written
∏N
k=1X

Bjk

k . In other word, the original Nxn
rectangular matrix B has been completed to a square
NxN matrix B̂ . If the rectangular matrix B is of maxi-
mal rank, then the completed square matrix B̂ is always
invertible. In the sequel we assume that the rank of B
is always maximal. Indeed, for the cases where the rank
of B is not maximal, we refer to the article [5] where it
is shown that the system can be decoupled into a lower
dimensional QP system with a new matrix B̃ with maxi-
mal rank and another lower dimensional sub-system that
is linear.

The whole system (8) has, thus, been transformed into
a N-dimensional QP system with n = N :

ẋi = α̂ixi

N∑
j=1

Âij

n∏
k=1

x
B̂jk

k i = 1, ..., N , (18)

in which, to take into account equations (17), α̂ is the

old vector α completed by N − n lines of zero and Â is
the old rectangular matrix A completed, also, by N − n
lines of zeroes.

Now, since system (18) has a number of monomials
that is equal to the number of dimensions of the system,
we can proceed as in the previous case n = N . The ma-
trix B−1 exists and we use it in order to transform the
system (18) with the help of a quasi-monomial transfor-
mation of the form:

ẋi =

N∏
k=1

X
′B̂−1

jk

k i = 1, ..., N , (19)

leading to:

ẋ
′

i = λ̂x
′

i + x
′

i

N∑
j=1

M̂ijx
′

j i = 1, ..., N , (20)

where

M̂ = B̂ ◦ Â and λ̂ = B̂ ◦ α̂ . (21)

However, by construction of the two new square matrices
Â and B̂, and of the vector α̂, one has: M̂ = B̂ ◦ Â =

B ◦A = M and λ̂ = B̂ ◦ α̂ = B ◦ α = λ. We thus get:

ẋ
′

i = λx
′

i + x
′

i

N∑
j=1

Mijx
′

j i = 1, ..., N . (22)

This is the same Lotka-Volterra system as in (16) but,
now, in N dimensions. We have embedded the dyna-
mics of our initially n-dimensional QP system into a N-
dimensional LV system.

For the case n > N , we refer to the article [5] for the
demonstration of the reduction to LV systems. In this
case, the LV system found is again the same as in (22).
But now, the embedding is replaced by a projection from
the original n-dimensional phase-space into a LV system
living in a smaller dimensional (N) phase-space.

In fact, in all the three cases, the dimension of the LV
system is the number N of independent monomials. Mo-
reover, obviously, the new variables x

′

i in terms of which
the LV system is written are these monomial themselves.
This is clear by inverting relation (19). Thus a simple
trick to find immediately the LV system corresponding
to a given QP system is to make the list of the indepen-
dent monomials appearing in it (when the pre-factor xi
has been first extracted) and to calculate the time deri-
vative of these monomials using the original QP system.
This leads, directly to the LV system (22) with M and λ
respectively given by M = B ◦A and λ = B ◦ α.

We can conclude by the following main theorem :

All QP systems ẋi = αixi
∑N
j=1Aij

∏n
k=1 x

Bjk

k ,
i = 1, ..., n, whose solutions are limited to the
positive orthant, can be reduced to the LV form

ẋ
′

i = λix
′

i +x
′

i

∑N
j=1Mijx

′

j , i = 1, ..., N , with M = B ◦A
and λ = B ◦ α.

Furthermore, the infinite set of all the QP systems is
divided into equivalence classes. Any such class contains
a canonical simplest form, the LV system. Each class is
characterized by the matrix M and the vector λ = B ◦ α
in the LV system of the class.

A last remark is that the type of nonlinearities occur-
ring in a QP system is unessential since the LV system to
which it is equivalent has always a quadratic nonlinearity.

G. Extension of the set of dynamical systems that
are reducible to QP systems

The generality of the above theorem is further increa-
sed by the fact that nonlinear dynamical systems

ẋi = fi(x1(t), ..., xn(t)) i = 1, .., n , (23)

that contain some nonlinear functions fi(x1(t), ..., xn(t))
which are more general than polynomial or quasi-
polynomial, can be re-casted in the form of QP sys-
tems [6, 7]. This is generally possible if the functions
fi(x1(t), ..., xn(t)) are enough regular and are themselves
solutions of polynomial or quasi-polynomial differential
equations. Then these last equations can be added to
the original system (23) to form a higher dimensional
system that will be a QP system. By the main theorem
shown above this new QP system can, in turn, be trans-
formed into a LV system. The LV quadratic nonlinearity
is the ultimate reduction of nonlinearity that can be re-
ached by exact transformations. This fact considerably
enlarges the field of the quasi-polynomial approach.
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H. Applications: Invariants, dimensional
reduction, stability

1. Exact integrability and reduction properties
of QP and LV systems

In some cases a QP system can be completely in-
tegrated or reduced to a smaller dimension. This
happens when enough invariants can be found or when
some transformations can decouple the system into
several sub-systems, some of them being linear. This
happens when, for instance, the matrix A or B are not
of maximal rank. If matrix A has a rank, say r, that
is smaller than n (the maximal rank) then there exists
a particular quasi-monomial transformation (11) that
leads to find n − r invariants. If, on the contrary it is
B that is of non-maximal rank, then, a quasi-monomial
transformation exists that decouples the transformed
system into one independent nonlinear sub-system
of smaller dimension and one linear sub-system that
depends on the solutions of the former. Details of these
properties and others that cannot be reported here are
to extensive to be reported here. They can be found in
the following publications [1, 8–10]. Moreover, most of
these algorithms are implemented in the computer alge-
bra software [QPSI] written in the language MAPLE [11].

2. Stability properties of QP and LV sys-
tems

For a LV system it is always possible to find some
Lyapunov function that allows for studying the stability
properties of its trajectories [2, 3]. Since we have
shown that most nonlinear dynamical systems can
be transformed into LV form, we can transfer all the
stability properties of the latter to these more general
dynamical systems. This has led to a large corpus of
results, too large to be exposed here, that can be found
in the following articles [12–17].

III. LECTURE 2

In this lecture we now focus on the Lotka-Volterra sys-
tems in order to find some of their Lie algebraic pro-
perties and, finally, to find two forms of their general
solutions. These results can, in turn, be transferred to
the original quasi-polynomial systems by performing the
appropriate inverse quasi-monomial transformations.

First, let us transform the LV system:

ẋi = λixi + xi

N∑
j=1

Mijxj i = 1, ..., N , (24)

into the N + 1 dimensional system

ẋi = xi

N+1∑
j=1

Ωijxj i = 1, ..., N + 1 , (25)

where the matrix Ω is the following extension of matrix
m:

A =

 M11 . . .M1N λ1

................
MN1 . . .MNN λN
................

 , (26)

with XN+1(t = 0) = 1 so that XN+1(t) = 1 for all t > 0.

A. Carleman infinite embedding representation of
LV dynamics

The Carleman embedding [18] consists in embedding
the original systems of ODEs into an infinite dimensional
space in the following manner.

Define for the N + 1 variables of (25) the following
monomials:

ψ(r1, r2, ..., rN+1; t) = Xr1
1 (t)Xr2

2 (t)...X
rN+1

N+1 (t) , (27)

with ri = 0, 1, 2, ... for all i = 1, ..., N + 1.
Then, take the time derivative of (26) and use equation

(25). This gives [19]:

∂tψ(r1, r2, ..., rN+1; t) = Hψ(r1, r2, ..., rN+1; t) , (28)

with the pseudo-Hamiltonian:

H ≡
N+1∑
i=1

N+1∑
j=1

riΩijDj , (29)

with the displacement operators Dj given by:

Djf(r1, r2, ..., rN+1; t) = f(r1, r2, ..., rN+1; t) . (30)

Equation (28) looks like a Schrödinger equation, however,
the pseudo-Hamiltonian operator is not Hermitian and,
consequently, equation (28) cannot be associated to a
true quantum system.

To be completely equivalent to the original LV pro-
blem (25), the equation (28) must be completed with the
following particular initial conditions:

ψ(r1, r2, ..., rN+1; 0) = Xr1
1 (0)Xr2

2 (0)...X
rN+1

N+1 (0) , (31)

where the Xi(0) are the initial values of the LV equation
(25).

Let us look more algebraically at the above result.
Using definition (30), let us compute the commutators
[Di, rj ]:

[Di, rj ] = Diδij . (32)

Now let us go to the Heisenberg picture of the above
pseudo-quantum problem (28-29) and calculate the time
derivative of the operators Di(t) with the help of the
pseudo-Hamiltonian H (29):

Ḋi(t) = [Di(t), H] . (33)
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This gives:

Ḋi(t) = Di(t)

N+1∑
j=1

ΩijDj(t) i = 1, ..., N + 1 . (34)

Equation (34) is just the Lotka-Volterra equation (25),
but written here for the operators .

This leads us to the conclusion that the LV equation
(25) (or (34)) and its Carleman embedding (28) are, res-
pectively, the Heisenberg and the Schrödinger versions of
the same pseudo-quantum system. The time evolution of
this system is characterized by the pseudo-Hamiltonian
H given in (29).

B. Abstract Lie algebraic structure of LV systems

Now, let us generalize the above notions. We define
two sets of abstract operators:

(Ai; i = 1, ..., N + 1) and (Bi; i = 1, ..., N + 1) ,

with the following commutation rules:

[Ai, Aj ] = 0, [Bi, Bj ] = 0, [Bi, Aj ] = Biδij . (35)

With these operators let us define a pseudo-Hamiltonian
operator:

H ≡
N+1∑
i=1

N+1∑
j=1

AiΩijBj , (36)

where the constant coefficients Ωij are the coupling cons-
tants of the Lotka-Volterra system (25).

Then, we have the time evolution in the Heisenberg
picture:

Ḃi(t) = [Bi(t), H] = Bi

N+1∑
j=1

ΩijBj i = 1, ..., N + 1 ,

(37)
and the time evolution of the same system in the
Schrödinger picture:

∂tψ(t) = Hψ(t) . (38)

The time evolution of the operators Ai can be easily cal-
culated and obeys a system of non-autonomous linear
differential equations of no interest here.

The equation (37) is just the abstract form of the LV
system for the operators Bi, while the equation (38) is the
abstract form of the pseudo-Schrödinger equation (28).
These equations are independent of the explicit realiza-
tion of the operators Ai and Bi. In fact, the operators
Di and ri (i = 1, ..., N + 1) were one instance of such a
realization with Ai = ri, Bi = Di. We shall now present
two others realizations of the abstract operators Ai and
Bi.

C. Two other realizations of the LV abstract Lie
algebra: creation-destruction operators and

Liouville equation

1. Creation destruction operator realization

Let us now realize the above operators Ai and Bi
in terms of boson creation-destruction operators ai,a

+
i .

The latter obey the usual boson commutation rules:

[ai, a
+
j ] = δij , [ai, aj ] = 0, [a+

i , a
+
j ] = 0 i = 1, ..., N+1 .

(39)
We now identify the operators Ai with the number ope-
rators a+

i ai and the operators Bi with the destruction
operators :

Ai = a+
i ai, Bi = ai . (40)

With the help of the commutators (39), it is easy to check
that the commutation rules (35) are verified for the Ai’s
and the Bi’s.

The abstract pseudo-Hamiltonian (36) now becomes:

H ≡
N+1∑
i=1

N+1∑
j=1

a+
i aiΩijaj . (41)

Let us calculate the time derivative of the ai(t) operators
in the Heisenberg picture:

ȧi(t) = [ai(t), H] . (42)

This is readily done and gives :

ȧi(t) = ai(t)

N+1∑
j=1

Ωijaj(t) . (43)

This is exactly the LV system for the time evolution of
the destruction operators ai, i = 1, ..., N + 1. The time
evolution of the operatorsAi = a+

i ai is governed by linear
differential equations that are not relevant here.

One could also calculate the time evolution in the
Schrödinger picture but is not interesting for our next
purposes.

Though very similar to quantum physical systems, the
system characterized by the above pseudo-Hamiltonian
(41) is not physical: It is not hermitian and does not
preserve the number of ”particles ”in time. But, of
course, we do not expect a general nonlinear dynamical
system to be equivalent to a quantum mechanical system!

2. Liouvillian realization

Let us now consider the following realization of the
abstract operators Ai and Bi (i = 1, ..., N + 1):

Ai ≡ −
∂

∂Xi
Xi, Bi ≡ Xi . (44)

The commutation rules (35) can easily be verified using
the elementary rules of derivative calculation.
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The pseudo-Hamiltonian (36) becomes here:

H ≡ −
N+1∑
i=1

N+1∑
j=1

∂

∂Xi
XiΩijXj . (45)

In the Heisenberg picture, the time evolution of the

operators xi(t):

ẋi(t) = [xi(t), H] i = 1, ..., N + 1 , (46)

is easily shown to give :

ẋi(t) = xi

N+1∑
j=1

Ωijxj i = 1, ..., N + 1 , (47)

which is exactly the Lotka-Volterra system.
In the Schrödinger picture, using equation (38), we get

:

∂tψ(r1, r2, ..., rN+1; t) = −
N+1∑
i=1

N+1∑
j=1

∂

∂Xi
XiΩijXjψ(r1, r2, ..., rN+1; t) . (48)

This partial derivative equation is easily recognizable. It
is the Liouville equation associated to the LV system.
It governs the time evolution of the probability density
ψ(r1, r2, ..., rN+1; t) of the point representing the position
at time t of the LV system in the N + 1 phase-space.
The probability density at time zero must be a given
distribution function ψ0 :

ψ(r1, r2, ..., rN+1; 0) = ψ0(r1, r2, ..., rN+1) . (49)

Below, we shall use this realization in order to derive a
path integral form of the general solution of a LV system.

D. The abstract Lie algebraic structure of linear
and LV dynamical systems

Lets us assume we have two dynamical systems, one
linear and one LV, in N+1 dimensions phase-space. We
can describe both types of systems with sets of operators
Ai, Bi.

For linear systems, these operators must satisfy the
following commutation rules :

[Ai, Aj ] = 0, [Bi, Bj ] = 0, [Bi, Aj ] = δij . (50)

For LV systems, these operators must satisfy the com-
mution rules already given in (35):

[Ai, Aj ] = 0, [Bi, Bj ] = 0, [Bi, Aj ] = Biδij . (51)

For both type of systems the pseudo-Hamiltonian has the
same expression in terms of these operators:

H ≡
N+1∑
i=1

N+1∑
j=1

AiΩijBj . (52)

It can easily be checked, using respectively commutation
rules (50) and (51), that the Heisenberg time evolution

equations for the N + 1 operators Bi:

Ḃi(t) = [Bi(t), H] , (53)

yields:

Linear system :

Ḃi(t) =

N+1∑
j=1

ΩijBj . (54)

LV system :

Ḃi(t) = Bi

N+1∑
j=1

ΩijBj . (55)

Thus, the only difference in the Lie algebra of both ty-
pes of systems resides in the third commutator in both
expressions (50) and (51). The evaluate the generality of
this result, one should keep in mind that the LV system
represents, in fact, a whole class of equivalence of nonli-
near dynamical systems as we have shown earlier in this
presentation.

E. General solution via Taylor series

In order to derive the Taylor series solution of the LV
system (25), the most appropriate realization is that ge-
nerated by the operators ri and Di in equations (27-34).
Indeed, let us first combine the equations (28) and (29).
This gives:

∂tψ(r1, r2, ..., rN+1; t) =

N+1∑
i=1

N+1∑
j=1

riΩijDjψ(r1, r2, ..., rN+1; t) ,

(56)
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with the particular initial condition:

ψ(r1, r2, ..., rN+1; 0) = Xr1
1 (0)Xr2

2 (0)...X
rN+1

N+1 (0) . (57)

The Taylor series solution of (56) is expressed by:

ψ(r, t) =

∞∑
k=0

tk

k!
ck(r) , (58)

where r denotes the vector (r1, ..., rN+1) and the coeffi-
cients of the series, ck(r) , are given by:

ck(r) =
dk

dtk
ψ(r, t)|t=0 , (59)

which, with the help of equation (56) iterated k time,
leads to:

ck(r) =

N+1∑
i=1

N+1∑
j=1

riΩijDj

k

ψ(r; 0) , (60)

that is, the k-th power of the Hamiltonian acting on the
initial ψ function.

Using the definition (30) of the displacement operators
Di and the expression (57) of the initial function, one gets
without difficulty:

ck(r) = [

N+1∏
j=1

X
rj
j (0)]

N+1∑
i1=1

. . .

N+1∑
ik=1

(rΩ)i1((rΩ)i2 + (Ω)i1i2)...(((rΩ)ik + (Ω)i1ik + ...+ (Ω)ik−1ik)Xi1(0)...Xik(0) .(61)

To obtain the Taylor series solution of the LV system
itself, one must remember that

Xi = ψ(r = ei, t) , (62)

where

ei = (0, ..., 0, ri = 1, 0, ...0) . (63)

Thus, the Taylor series solution of the LV system:

xi =

N+1∑
j=1

Ωijxj , (64)

is given by :

Xi(t) =

∞∑
k=0

tk

k!
ck(ei) , (65)

with the following expression of the general coefficient :

ck(ei) = Xj(0)

N+1∑
i1=1

. . .

N+1∑
ik=1

(rΩ)i1((rΩ)j2 + (Ω)i1i2)...(((rΩ)ik + (Ω)i1ik + ...+ (Ω)ik−1ik)Xi1(0)...Xik(0) .

(66)

The solution (65, 66) of the LV system (64) defines a
new class of special functions [19]. This is in complete
analogy with the generalized hypergeometric functions
[20] that are defined as Taylor series giving the solutions
of second order linear differential equations.

The fact, that we have obtained an analytic expression
of the general term of the Taylor series gives much more
information on the solution than the usual numerical
Taylor expansions that are currently used to solve nonli-
near differential systems. First, it allows for developing
a computer algebra software for solving non-numerically

LV systems [21]. The program computes and stores re-
sults that are dependent of the symbolic values of the
coefficients. This permits to vary the parameters at will
without re-beginning the whole calculations.

Also, the knowledge of the general term of a Taylor
series permits to evaluate the radius of convergence, to
calculate analytical continuations and, also, to derive
asymptotic expansions for the solution. However, this
last claim is only in its infancy and must be developped.

One should, however, recognize that applications of
this form of the solution are up to now limited by the
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difficulty of finding closed expressions of the many fi-
nite sums appearing in the expression (66) of the Taylor
coefficients. The complexity of these sums reflects all
the complexity of the nonlinear dynamical systems! It is
comparable to the complexity of the partition function
of a system of N particles interacting through a binary
interaction potential, at thermal equilibrium. The par-
tition function is also expressed in terms of many finite
sums of a summand that depends on the binary inte-
raction potential between the N particles and its exact
closed expression is usually out of our present technical
ability.

However, expression (66) provides an alternative to
other methods that could help obtaining more informa-
tions on the behaviour of the solutions of nonlinear dy-
namical systems.

F. General solution via path integrals

The Liouvillian realization of the abstract LV algebra
is better adapted for the objective of deriving a path
integral form of the solution of the LV system (25).

We recall the description of the time evolution of the
system in Schrödinger picture:

∂tψ(X1, X2, ..., XN+1; t) = −
N+1∑
i=1

N+1∑
j=1

∂

∂Xi
XiΩijXjψ(X1, X2, ..., XN+1; t) . (67)

For the Liouville equation (67) to be completely equiva-
lent to the original deterministic LV equation (25), we
need to assume that the initial distribution is determi-
nistic, i.e., the initial condition is known with probability
one :

ψ(X1, X2, ..., XN+1; 0) =

N+1∏
i=1

δ(Xi −X0
i ) . (68)

The formal solution of equation (67), for any initial dis-
tribution, can always be written as :

ψ(X1, X2, ..., XN+1; t) =<

N+1∏
i=1

δ(Xi −Xi(t,X1(0), ..., XN+1(0))) >ψ(t=0) , (69)

where the symbol <>ψ(t=0) means the operation of ave-

rage over the initial distribution ψ(X; t = 0).

The explicit expression of the average in (69) gives:

ψ(X1, X2, ..., XN+1; t) =

∫
dX1(0)...dXN+1

N+1∏
i=1

δ(Xi−Xi(t,X1(0), ..., XN+1(0)))ψ(X1(0), X2(0), ..., XN+1(0); t = 0) ,

(70)

where Xi(t,X1(0), ..., XN+1(0)), (i = 1, ..., N + 1), deno-
tes the trajectory of the solution to (25).

Let us now consider the expression (70) for a short
time ∆t ≡ t/n :

ψ(X1, X2, ..., XN+1; ∆t) =

∫
dX1(0)...dXN+1

N+1∏
i=1

δ(Xi−Xi(∆t,X1(0), ..., XN+1(0)))ψ(X1(0), X2(0), ..., XN+1(0); t = 0) .

(71)

For large enough values of n, that is, for small enough values of , the solution of the LV system (25) can be
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written:

Xi(∆t,X1(0), ..., XN+1(0)) = Xi(0)+∆tXi(0)

N+1∑
j=1

ΩijXi(0) i = 1, ..., N+1 .

(72)

Inserting equation (72) into (71), we get:

ψ(X1,X2, ..., XN+1; ∆t) =

∫
dX1(0)...dXN+1(0)×

N+1∏
i=1

δ(Xi −Xi(0)−∆tXi(0)×

N+1∑
j=1

ΩijXi(0))ψ(X1(0), X2(0), ..., XN+1(0); t = 0) .

(73)

If we displace the initial time from t = 0 to t = ∆t in
(73), we obtain:

ψ(X1, X2, ..., XN+1; 2∆t) =

∫
dX1(1)...dXN+1(1)

N+1∏
i=1

δ(Xi−Xi(1)−∆tXi(1)

N+1∑
j=1

ΩijXi(1))ψ(X1(1), X2(1), ..., XN+1(1); ∆t) ,

(74)

where we used the notation:

Xi(k) ≡ Xi(k∆t) . (75)

The relation (74) can be translated up to time t = n∆t:

ψ(X1,X2, ..., XN+1;n∆t) =

∫
dX1(n− 1)...dXN+1(n− 1) ×

N+1∏
i=1

δ(Xi −Xi(n− 1) − ∆tXi(n− 1)

N+1∑
j=1

ΩijXi(n− 1)) ×

ψ(X1(n− 1), X2(n− 1), ..., XN+1(n− 1); (n− 1)∆t) . (76)

The recursion on n appearing in (75) can now be iterated
down to n = 0, leading to:

ψ(X1,X2, ..., XN+1;n∆t) =

∫
dN+1X1(n− 1)...dN+1XN+1(0)×

N+1∏
in−1=1

δ(Xin−1
−Xin−1

(n− 1)−∆tXin−1
(n− 1)

N+1∑
jn−1=1

Ωin−1jn−1
Xjn−1

(n− 1))×

N+1∏
in−2=1

δ(Xin−2
(n− 2)−Xin−2

(n− 2)−∆tXin−2
(n− 2)

N+1∑
jn−2=1

Ωin−2jn−2
Xjn−2

(n− 2))...

N+1∏
i0=1

δ(Xi0(1)−Xi0(0)−∆tXi0(0)

N+1∑
j0=1

Ωi0j0Xj0(0))ψ(X1(0), X2(0), ..., XN+1(0); 0) . (77)

Obviously, the n integrals appearing in (76) represent
a summation over all the possible (broken) paths connec-
ting the point X(0) to the point X(n∆ = t) ≡ X in the
N+1-dimensional phase-space of the LV system (25). In
the limit n → ∞, ∆t = 0, n∆ = t (t finite), these paths
become smooth curves and the n integrals tend towards
a so-called path integral.

As a last step, we introduce the particular initial con-

dition (68) in the expression (76). This enables us to
perform the integral over all the possible positions of the
initial point X(0) . This operation along with the fol-
lowing property of the Dirac delta distribution:

δ(ax) =
1

|a|
δ(x) (78)

transforms the expression (76) into:
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ψ(X1,X2, ..., XN+1;n∆t) =
1

∆tn(N+1)

∫
dN+1X1(n− 1)...dN+1XN+1(0)×

N+1∏
in−1=1

δ(
Xin−1

−Xin−1
(n− 1)

∆t
−Xin−1

(n− 1)

N+1∑
jn−1=1

Ωin−1jn−1
Xjn−1

(n− 1))×

N+1∏
in−2=1

δ(
Xin−2(n− 2)−Xin−2(n− 2)

∆t
−Xin−2(n− 2)

N+1∑
jn−2=1

Ωin−2jn−2Xjn−2(n− 2))...

N+1∏
i0=1

δ(
Xi0(1)−X0

i0

∆t
−X0

i0

N+1∑
j0=1

Ωi0j0X
0
j0) . (79)

One observes in (78) the apparition of the component i
of the discretized velocity at time k∆t: (Xi(k)−Xi(k −
1))/∆t. Taking the limit n → ∞, ∆t = 0, n∆ = t (t
finite) of (78), we obtain the path integral form of the
solution to the LV system (25):

ψ(x, t) =

∫ x=x(t)

x(0)

Dx(·)
N+1∏
i=1

δ(ẋi(·)− xi(·)
N+1∑
j=1

Ωijx(·)) ,

(80)
where the path integral operator is defined as:

lim
n→∞,∆t=0,n∆=t

1

∆tn(N+1)

∫
dN+1X1(n−1)...dN+1XN+1(0) ,

(81)
and where xi(·) represents the function xi of time as a
point in a set of functions.

The path integral (79) is a new result. It is a very
complex mathematical object. Usually, in order to com-
pute such path integrals, one needs to go back to the
discrete time version. Here, it means to return to equa-
tion (78). After completing the calculations, one takes
the limit n→∞, ∆t = 0, n∆ = t. There is no guaranty
up to now that such calculations are feasible but I think
them worth to be attempted.

Of course all the results exposed in the two last chap-
ters can be back transformed to the original QP systems.
We do not present this inverse transformation here be-
cause it is quite simple.

IV. CONCLUSION

I hope to have convinced the reader that the QP the-
ory is a significant progress in the study of nonlinear dy-
namical systems. It unifies the all domain around the
study of the unique Lotka-Volterra canonical form. This

offers the possibility to transfer all the mathematical kno-
wledge about LV systems to the much larger domain of
the nonlinear dynamical systems that can be put in the
quasi-polynomial format. This transfer is far from being
completed by now but it would be of high interest to
achieve it because the amount of results known on the
LV systems is really huge.

Furthermore, I have shown that the LV format leads
to a deeper understanding of the Lie algebraic structure
that lies underneath the linear and LV systems, and more
generally nonlinear dynamical systems. This new, more
algebraic, way of looking at dynamical systems seems
promising. It provides a new flexibility by allowing for
choosing among various realizations of the same dynami-
cal system, the one that is more adapted to one’s objec-
tive.

The algebraic point of view permits also to discover a
deep similarity between dynamical systems that are, after
all, classical systems and quantum systems. Among the
quantum tools that can be applied to classical dynamical
systems we have the different pictures of the time evolu-
tion of a dynamical system such as the Heisenberg and
Schrödinger pictures. We have found also that a dynami-
cal system is always generated by a Hamiltonian opera-
tor. When written in terms of creation-destruction boson
operators, the similarity of these Hamiltonians with those
of quantum systems becomes striking.

Among the various realizations of the algebra of LV
systems we showed that two of them, at least, are enough
practical to obtain a form of the general solution. These
solutions are quite complex. This is expected for nonli-
near dynamical systems that can, for instance, be in a
chaotic regime.

A deep question remains: What happens to these solu-
tions when a given dynamical system is in such a chaotic
regime? The answer to this question needs a way to ex-
tract from one or another form of the general solution its
time asymptotic behaviour. This is a very exciting work
that still remains to be done!
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