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Ano 13, 2025 • http://periodicos.unb.br/index.php/e-bfis • eBFIS XIII 02-1(03)

Introdução ao Formalismo da Equação de Klein-Gordon: Da Dedução Relativ́ıstica às
Part́ıculas de Spin-0

Hudson Rodrigues Armando,∗ Bill Darwin Aparicio Huacarpuma,

Willian Fabio Radel, and Rodrigo Alkimim Faria Alves

No ińıcio do século XX, as estruturas da F́ısica foram abaladas pelo surgimento de duas teorias
revolucionárias: a Relatividade Restrita e a Mecânica Quântica. Apesar dos desafios em conciliar
essas duas teorias, as tentativas de unificação deram origem à Mecânica Quântica Relativ́ıstica,
uma teoria capaz de descrever as part́ıculas elementares em um regime de altas energias. Este
estudo se propõe a apresentar uma abordagem introdutória à equação de Klein-Gordon, uma das
primeiras tentativas em busca da referida unificação. Por meio de revisões da literatura existente
sobre o tema, foi apresentada uma dedução da Klein-Gordon partindo da equação de onda de
Schrodinger para a part́ıcula livre. Apresentamos também a equação de Klein-Gordon nos limites
não relativ́ısticos, bem como as suas implicações na teoria quântica relativ́ıstica, mostrando a sua
importância na descrição teórica das part́ıculas e antipart́ıculas de spin-0.
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I. INTRODUÇÃO

As três primeiras décadas do século XX serviram de
palco a uma intensa atividade cient́ıfica que revolucionou
a f́ısica. Em 1905, Einstein apresentou ao mundo a sua
teoria da relatividade especial [1] e, dez anos depois, as
equações de campo que constituem o cerne da sua Teoria
Geral da Relatividade [2]. Esta última, ao incorporar a
gravidade em sua descrição da realidade f́ısica, tornou-se
um arcabouço teórico de notável elegância matemática
[3]. Uma década após a inestimável contribuição de Ein-
stein, em 1925, Bohr e Heisenberg apresentaram o formal-
ismo da mecânica matricial [4] para descrever a também
incipiente teoria quântica. Em 1926, Erwin Schrödinger
publicou um estudo onde aparece pela primeira vez a
ideia de usar uma função de onda [5] para descrever um
sistema quântico evoluindo no tempo [6].

Proposta independentemente por Oskar Klein e Walter
Gordon em 1926, a equação de Klein-Gordon [7, 8] surgiu
como uma tentativa de reconciliar a mecânica quântica
com a relatividade especial de Einstein, visto que a teo-
ria de Einstein já havia sido confirmada experimental-
mente e descrevia corretamente os fenômenos a veloci-
dades próximas a da luz no vácuo, o que demandava uma
modificação da teoria quântica a fim de corrigi-la no lim-
ite relativ́ıstico [9, 10]. Embora a formulação inicial da
equação de Klein-Gordon tenha enfrentado resistências
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devido às dificuldades de interpretação, não demorou
muito para que ela se tornasse uma ferramenta crucial
para a compreensão de fenômenos fundamentais em difer-
entes contextos teóricos e experimentais, que vão desde
a f́ısica de part́ıculas até a astrof́ısica [11, 12] (Figura 1).

Além de descrever part́ıculas escalares de spin-0, a
equação de Klein-Gordon é usada na f́ısica de part́ıculas
para modelar campos quânticos [13]. Na f́ısica nuclear
ela modela as part́ıculas mediadoras de forças nucleares
conhecidas como mésons [14]. Na astrof́ısica e cosmolo-
gia a equação é usada em modelos de inflação cósmica e
matéria escura [15, 16]. Na relatividade geral aplicam-se
versões generalizadas da equação de Klein-Gordon para
campos escalares em espaço-tempo curvos, compondo
modelos fundamentais para estudar a radição de Hawking
no horizonte de eventos de buracos negros e a interação
da gravidade com campos escalares [17, 18].

A equação Klein-Gordon introduziu a noção de um
campo quântico relativ́ıstico, possibilitando uma de-
scrição consistente das part́ıculas neutras e carregadas,
incluindo bósons intermediários responsáveis pela força
eletromagnética e interações nucleares [23]. Além disso,
essa equação teve um papel fundamental na previsão
teórica de novas part́ıculas, como o ṕıon (méson-π), cuja
existência foi confirmada experimentalmente em 1947 por
Cecil Powel, César Lattes e Giuseppe Occhialini [24, 25].

Este artigo tem o objetivo de apresentar um estudo
teórico introdutório sobre o formalismo da equação de
Klein-Gordon. Inicialmente, será realizada uma breve
introdução à notação tensorial, ferramenta indispensável
para compreender os conceitos relativ́ısticos da teo-



III DEDUÇÃO DA EQUAÇÃO DE KLEIN-GORDON

Figure 1. Áreas da F́ısica em que a equação de Klein-Gordon se
faz presente. [19–22].

ria. Em seguida, na seção III será feita uma dedução
da Equação de Klein-Gordon a partir da equação de
Schrodinger. Na seção IV, será abordada a questão do
limite não relativ́ıstico da teoria, investigando como a
equação de Klein-Gordon pode descrever part́ıculas e
antipart́ıculas de spin-0. A relação entre a equação de
Klein-Gordon e a Mecânica Quântica Relativ́ıstica será
explorada com mais detalhes na seção V, onde será apre-
sentada uma interpretação das densidade de carga nega-
tivas que surgem da teoria. Por fim, a seção VI discutirá
uma aplicação da equação de Klein-Gordon para descr-
ever part́ıculas de spin-0.

II. NOTAÇÃO TENSORIAL

Antes de abordar os preceitos básicos para o desen-
volvimento de uma teoria quântica relativ́ıstica, é perti-
nente revisar alguns conceitos fundamentais da relativi-
dade restrita e da notação tensorial [26–28].

O estudo da relatividade restrita pode ser abordado
através da definição dos chamados quadrivetores, de
modo a garantir que a matriz das transformações de
Lorentz seja ortogonal [29]. Sob essas condições, não há
distinções entre as diferentes representações. Para al-
cançar esse resultado, é necessário incluir a componente
temporal como um número imaginário.

Seja xµ um quadrivetor no espaço de Minkowski com
componentes (x0, x1, x2, x3) onde x0 = ict (componente
temporal) e x1 = x, x2 = y e x3 = z correspondem
às componentes espaciais do espaço euclidiano tridimen-
sional [30].

Para dois quadrivetores arbitrários α e β, pode-se es-
tabelecer uma operação de contração definida como

3∑
µ=0

αµβµ = αµβµ (1)

onde αµ é um vetor covariante, βµ um vetor contravari-
ante e µ um ı́ndice que varia de 0 a 3.
Essa operação de “levantamento” e “abaixamento” de

ı́ndice é intermediada pelo tensor métrico do espaço-
tempo de Minkowski ηµν , definido como

ηµν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2)

onde os ı́ndices µ e ν variam de 0 a 3 [10].
A forma contravariante de ηµν é representada por ηµν

[31], de tal forma que o produto de ambos resulta numa
função delta:

ηµκηκν = δµν

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3)

As componentes espaciais de xµ compõem um vetor r,
ou seja, xµ = (ct, r) e xµ = (ct,−r). Portanto

xµxµ = c2t2 − r2 (4)

que caracteriza a distância entre dois eventos no espaço
tempo [32, 33].
Dessa forma, é posśıvel definir o comprimento do ten-

sor quadridimensional através da relação:

ds2 = ηµνdx
µdxν (5)

Definindo xµ = ηµνx
ν , a equação (5) pode ser escrita

de uma forma mais conveniente:

ds2 = dxµdx
µ = dxµdxν (6)

III. DEDUÇÃO DA EQUAÇÃO DE
KLEIN-GORDON

A equação de Schrodinger pode ser utilizada para de-
screver a evolução temporal de uma part́ıcula livre de
massa m [34]:

iℏ
∂Ψ

∂t
= HΨ (7)

onde H é o operador hamiltoniano não-relativ́ıstico

H = − ℏ2

2m
∇2 (8)

Assim, com o operador H acima inserido na equação
(7), obtém-se a conhecida equação de Schrodinger para
uma part́ıcula livre:

iℏ
∂Ψ(r, t)

∂t
= − ℏ2

2m
∇2Ψ(r, t) (9)
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A evolução temporal da part́ıcula relativ́ıstica pode ser
estudada usando o hamiltoniano

H =
√

p2c2 +m2
0c

4 (10)

Dessa forma, a equação (9) assume a forma

iℏ
∂Ψ(r, t)

∂t
=

√
−ℏ2c2∇2 +m2

0c
4 Ψ(r, t) (11)

Uma solução posśıvel para contornar o radical que en-
volve o operador consiste em aplicar o hamiltoniano (10)
novamente em ambos os lados da equação (11), resul-
tando em

−ℏ2
∂2Ψ(r, t)

∂t2
=

(
−ℏ2c2∇2 +m2

0c
4
)
Ψ(r, t)

que pode ser reescrita como(
1

c2
∂2

∂t2
−∇2 +

m2
0c

4

ℏ2

)
Ψ = 0 (12)

A expressão (12) é covariante sob transformações de
Lorentz e constitui a equação de onda relativ́ıstica de
Klein-Gordon para uma part́ıcula livre com spin-0 [35,
36]. Essa expressão exibe notáveis semelhanças com uma
equação de onda clássica (exceto pelo m2

0) onde o termo
independente introduz uma escala de comprimento ℏ/mc,
conhecida como o comprimento de onda de Compton [37].

Devido às diferenças fundamentais entre o espaço eu-
clidiano e o espaço-tempo relativ́ıstico, o operador lapla-
ciano ∇2 [38] assume uma forma distinta no espaço de
Minkowski, onde é conhecido como d’Alembertiano □
[39]. Este operador é um covariante de Lorentz definido
por:

□ = ∇µ∇µ =
1

c2
∂2

∂t2
−∇2 (13)

Portanto, expressando a equação de Klein-Gordon (12)
em termos do operador d’Alembertiano, obtém-se:(

□+
m2

0c
2

ℏ2

)
Ψ = 0 (14)

O operador □ também é útil para descrever o oper-
ador quadri-momentum p̂µ de forma mais conveniente
no espaço de Minkowski [40] e reescrever a equação de
Klein-Gordon em termos desse operador. Assim, seja o
vetor quadri-momentum

pµ =

{
E

c
, px, py, pz

}
(15)

Usando a expressão da energia relativ́ıstica presente no
radical da equação (10) e a propriedade expressa em (4),
o produto de pµ pela sua forma covariante resulta em

pµpµ =
E2

c2
− p · p = m2

0c
2 (16)

De forma análoga, o operador quadri-momentum p̂µ

dado por

p̂µ = iℏ
∂

∂xµ
= iℏ∇µ

pode ser aplicado à sua forma covariante p̂µ, resultando
em

p̂µp̂µ = −ℏ2∇µ∇µ = −ℏ2□ (17)

Assim, reescrevendo a equação (14) como

−ℏ2□Ψ = m2
0c

2Ψ

E comparando com a expressão (17), o resultado obtido
é novamente a equação de Klein-Gordon:

p̂µp̂µΨ = m2
0c

2Ψ (18)

A equação de Klein-Gordon apresenta algumas das
caracteŕısticas desejáveis em uma equação de onda rel-
ativ́ıstica como, por exemplo, a sua natureza relativisti-
camente covariante devido à invariância do intervalo do
espaço-tempo sob transformações de Lorentz [41]. Isso
implica diretamente na consistência das derivadas pre-
sentes na equação (12), independentemente da mudança
de referencial.

IV. O LIMITE NÃO RELATIVÍSTICO

Na seção III, a equação de Schrödinger para uma
part́ıcula livre relativ́ıstica foi utilizada para deduzir a
equação de Klein-Gordon. O objetivo agora é analisar
a equação de Klein-Gordon no limite não relativ́ıstico,
a fim de verificar se é posśıvel reduzi-la à equação de
Schrödinger. Este exame é fundamental para compreen-
der a relação entre os regimes relativ́ıstico e não rela-
tiv́ıstico e para confirmar se as duas equações são consis-
tentes sob diferentes condições f́ısicas [42].
Uma estratégia útil para cumprir o objetivo proposto

consiste em determinar uma função de onda Ψ composta
de dois termos, de tal forma que em um deles esteja in-
serido a massa de repouso m0 [31, 43]. Dessa forma, seja
Ψ(r, t) a seguinte função de onda:

Ψ(r, t) = ϕ(r, t)e−
i
ℏm0c

2t (19)

Calculando a derivada da função (19) em relação ao
tempo e multiplicando ambos os lados da equação resul-
tante por iℏ:

iℏ
∂Ψ(r, t)

∂t
=

(
iℏ

∂ϕ

∂t
+m0c

2ϕ

)
e−

i
ℏm0c

2t (20)

onde iℏ∂ϕ
∂t = E′ ∂ϕ

∂t
No entanto, partindo da função (19), é posśıvel demon-

strar que, no limite não relativ́ıstico, a energia E da
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part́ıcula difere minimamente de sua massa de repouso
[31]. Ou seja, ao considerar que

E′ = E −m0c
2 (21)

conclui-se de imediato que energia cinética E′ é não rel-
ativ́ıstica, pois E′ ≪ m0c

2.
Dessa forma, a equação expressa em (20) pode ser

aproximada com grande exatidão pela expressão

∂Ψ(r, t)

∂t
≈ − im0c

2

ℏ
e−

i
ℏm0c

2t (22)

Derivando novamente a equação (20) em relação ao
tempo, pode-se também obter uma boa aproximação
dada por

∂2Ψ(r, t)

∂t2
= −

(
2im0c

2

ℏ
∂ϕ

∂t
+

m2
0c

4

ℏ2
ϕ

)
e−

i
ℏm0c

2t (23)

que, por sua vez, pode ser escrita como

∂2Ψ(r, t)

∂t2
= − 1

c2

(
2im0c

2

ℏ
∂

∂t
+

m2
0c

4

ℏ2

)
ϕe−

i
ℏm0c

2t (24)

Dessa forma, inserindo o resultado (24) na equação
(14), obtém-se

iℏ
∂ϕ

∂t
= − ℏ2

2m0
∇2ϕ (25)

O resultado expresso em (25) é a equação de
Schrödinger para part́ıculas livres de spin-0. A função de
onda ϕ dessa equação não depende de a part́ıcula descrita
ser relativ́ıstica ou não, o que induz à conclusão imediata
de que a equação de Klein-Gordon descreve part́ıculas e
antipart́ıculas de spin-0 [9, 31].

V. EQUAÇÃO DE KLEIN-GORDON E A
MECÂNICA QUÂNTICA RELATIVÍSTICA

Seja Ψ(r, t) uma função de onda relativ́ıstica:

Ψ(r, t) = αe−
i
ℏ (Et−p·r) = αe−

i
ℏpxµxµ

(26)

onde α é uma constante de normalização.
Ao substituir a função de onda (26) na equação (14)(

□+
m2

0c
2

ℏ2

)
αe−

i
ℏpxµxµ

= 0

obtém-se(
− E2

ℏ2c2
+

p2

ℏ2
+

m2
0c

2

ℏ2

)
αe−

i
ℏpxµxµ

= 0 (27)

Assim, ao igualar a zero o termo entre parênteses da
equação (27), obtém-se uma expressão para a energia da

part́ıcula livre relativ́ıstica que é semelhante à obtida em
(10).

E = ±
√

p2c2 +m2
0c

4 (28)

O resultado da expressão (28) é inicialmente contrain-
tuitivo dentro da mecânica quântica, uma vez que pos-
sibilita à equação de Klein-Gordon a obtenção energias
negativas. Essa possibilidade por si só induz à neces-
sidade de se revisar o conceito de função de onda rel-
ativ́ıstica. No entanto, foi descoberto posteriormente
que as soluções associadas a energias negativas estão
fisicamente relacionadas a antipart́ıculas e, portanto, a
equação de Klein-Gordon oferece um vislumbre valioso
sobre os posśıveis valores de energia dessas entidades
f́ısicas exóticas [31].
Uma forma de abordar esse problema consiste em en-

contrar uma lei de conservação para o quadrivetor de den-
sidade de fluxo jµ adequado à equação de Klein-Gordon
(18).
No contexto de sistemas não relativ́ısticos, a densidade

de fluxo de probabilidade j [44] pode ser obtida pela
expressão

∂ρ

∂t
= −∇ · j (29)

onde ρ é a densidade de probabilidade (uma variável pos-
itiva por definição). Essa equação 29 garante que a prob-
abilidade dentro de um sistema fechado permanece con-
stante ao longo do tempo [45].
Reescrevendo a Klein-Gordon obtida em (18) na forma(

p̂µp̂µ −m2
0c

2
)
Ψ = 0 (30)

cujo complexo conjugado é(
p̂µp̂µ −m2

0c
2
)
Ψ∗ = 0 (31)

Agora, aplicando Ψ∗ em ambos os lados da equação
(30), procedendo da mesma forma com Ψ em relação à
equação (31) e subtraindo as expressões resultantes:

Ψ∗ (p̂µp̂µ −m2
0c

2
)
Ψ−Ψ

(
p̂µp̂µ −m2

0c
2
)
Ψ∗ = 0

Da equação (17), tém-se

−Ψ∗ (ℏ2∇µ∇µ +m2
0c

2
)
Ψ+Ψ

(
ℏ2∇µ∇µ +m2

0c
2
)
Ψ∗ = 0

Portanto

∇µj
µ ≡ ∇µ (Ψ

∗∇µΨ−Ψ∇µΨ∗) = 0 (32)

Ao multiplicar o lado direito da equação (32) pela con-
stante iℏ/2m0, garante-se que o termo j0 no quadrifluxo
é constante e possui dimensão de densidade de probabil-
idade. Essa constante na equação assegura a existência
de um limite não relativ́ıstico, resultando no quadrifluxo
de densidade expresso por:

jµ =
iℏ
2m0

(Ψ∗∇µΨ−Ψ∇µΨ
∗) = 0 (33)
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VI PARTÍCULAS LIVRES COM SPIN-0

Efetuando a derivada temporal da quadri-corrente jµ,
obtém-se uma expressão de densidade. Isso ocorre porque
a equação de Klein-Gordon é uma equação de segunda or-
dem na derivada temporal, o que significa que a derivada
temporal da quadri-corrente é diretamente relacionada à
densidade de probabilidade ρ e à densidade de corrente
j [46, 47]. Assim, a equação de continuidade (29) pode
ser expressa como

ρ(x, t) =
iℏ

2m0c2

(
Ψ∗ ∂

∂t
Ψ−Ψ

∂

∂t
Ψ∗

)
(34)

Apesar das expressões (33) e (34) não conduzirem
diretamente a uma interpretação probabiĺıstica na for-
mulação de Klein-Gordon, é posśıvel multiplicá-las pela
carga e fazendo com que as quantidades resultantes desse
produto possam ser entendidas como uma densidade de
carga ρ′(x, t) e de corrente de carga j′(x, t) [40, 48].

ρ′(x, t) =
iℏe

2m0c2

(
Ψ∗ ∂

∂t
Ψ−Ψ

∂

∂t
Ψ∗

)
(35)

jµ =
iℏe
2m0

(Ψ∇µΨ
∗ −Ψ∗∇µΨ) (36)

As funções ρ′(x, t) e jµ representam, respectivamente,
a distribuição de carga elétrica em um ponto no espaço-
tempo e a taxa de fluxo de carga elétrica por esse ponto.
Nas funções expressas em (35) e (36), a carga elétrica e
foi usada para normalizar as quantidades ρ(x, t) e j(x, t),
tornando posśıvel a interpretação das funções resultantes
em termos de densidade de carga e corrente.

Além disso, é importante notar que o produto pela
carga elétrica e permite que a função ρ′(x, t) assuma
valores positivos, negativos e nulos, dependendo da na-
tureza da carga. Essa variação de valores é consistente
com a previsão teórica da existência de part́ıculas e an-
tipart́ıculas, uma vez que as cargas positivas e negativas
podem estar distribúıdas no espaço [49].

Para aprofundarmos um pouco mais essa inter-
pretação, ao substituir a função de onda relativ́ıstica sug-
erida na equação (26) na função de densidade de carga
obtida em (35) chega-se na expressão:

ρ′(x, t)(±) = ± e|E|
m0c2

Ψ∗
(±)Ψ(±) (37)

A nova equação para densidade de carga expressa em
(37) fornece uma interpretação mais clara sobre o sig-
nificado das suas soluções. Assim, a função Ψ(+) de-
screve part́ıculas com massa de repouso m0 e carga +e,
enquanto Ψ(−) representa algo com a mesma massa, mas
com carga oposta −e, ou seja, as antipart́ıculas.

O hamiltoniano usado para descrever a interação en-
tre part́ıculas e campos eletromagnéticos, estabelece uma
correspondência direta entre as soluções de energias com
suas cargas correspondentes [35]. Essa simetria sug-
ere que as soluções de energia negativa representam an-
tipart́ıculas, ou seja, entidades f́ısicas que possuem a

mesma massa das part́ıculas mas com cargas opostas, re-
forçando a teoria que prevê a existência de antimatéria.
Em 1932, o f́ısico estadunidense Carl David Anderson

confirmou experimentalmente essa previsão ao descobrir
o pósitron (antipart́ıcula do elétron) após os trabalhos de
Dirac [50]. Essa descoberta lhe rendeu o Nobel de F́ısica
em 1936 (aos 35 anos de idade!) [51], validando a teoria
quântica relativ́ıstica.

VI. PARTÍCULAS LIVRES COM SPIN-0

O spin é uma propriedade quântica intŕınseca das
part́ıculas elementares que, apesar de não possuir um
análogo clássico, costuma ser comparado com o movi-
mento de “rotação” das part́ıculas, uma vez que o spin
se manifesta como um momento angular quantizado cu-
jos operadores satisfazem às propriedades de uma álgebra
de Lie [52–54].
As part́ıculas de spin-0 não possuem uma orientação

de “rotação” espećıfica, como ocorre no caso dos elétrons
(férmions de spin-1/2) ou fótons (bósons de spin-1)
(Figura 2). Dessa forma, as part́ıculas de spin-0 são con-
sideradas como part́ıculas escalares por serem invariantes
sob transformações de rotação [55].

Figure 2. Representação dos spins de férmions e bósons.

Apesar de não existirem part́ıculas com spin-0 estáveis
na natureza, elas desempenham um importante papel na
compreensão de uma série de fenômenos f́ısicos, sobre-
tudo na f́ısica de part́ıculas e na cosmologia. Como ex-
emplo de tais part́ıculas pode-se citar os Ṕıons e Káons,
que são mésons formados por um quark e um antiquark.
Essas part́ıculas possuem um papel crucial na interação
forte entre hádrons [45, 56].
Nesta seção, será apresentada uma das mais notáveis

aplicações da Equação de Klein-Gordon: as part́ıculas
com spin-0. Mesmo sabendo que no âmbito de uma teoria
relativ́ıstica a ideia de uma part́ıcula livre ser uma mera
abstração, é posśıvel lidar com esse conceito estudando
as soluções livre da equação (18).
O estudo realizado na seção anterior mostrou como,

a partir da densidade de corrente, foi posśıvel deduzir
uma expressão para a densidade de carga que tenha sig-
nificado f́ısico quando assume valores positivos, nega-
tivos ou nulos. No entanto, calculando as soluções para
part́ıculas livres, pode-se chegar a uma compreensão mais
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abrangente a respeito da existência de part́ıculas e an-
tipart́ıculas no âmbito da teoria [31].

Partindo da equação de Klein-Gordon expressa em
(18), pode-se afirmar que

p̂µp̂µ −m2
0c

2 = p20 − p2 −m2
0c

2

Sabendo que p0 = E/c [1], chega-se à conclusão de que
o momentum p possui duas soluções posśıveis, uma com
a energia positiva e a outra negativa dada por

Ep = ±c
√
p2 +m2

0c
2 (38)

Assim, a função de onda relativ́ıstica proposta anteri-
ormente na equação (26) será expressa como

Ψ(±) = α(±)e
− i

ℏ (p·x∓|Ep|t) (39)

onde α(±) é a constante de renormalização a ser definida
posteriormente.

Inserindo as equações (38) e (39) na expressão de-
duzida anteriormente para a densidade de carga ρ′(x, t)
(35), torna-se posśıvel reescrever a equação (37) eviden-
ciando a energia Ep, ou seja:

ρ′(±) = ±e|Ep|
m0c2

Ψ∗
(±)Ψ(±) (40)

Na seção anterior, foi feita a discussão sobre a inter-
pretação das soluções dessa equação poderem ser positi-
vas, negativas ou nulas. Além disso, é preciso mencionar
que a solução geral da equação de onda é sempre uma
combinação linear das posśıveis soluções [31]. Para mel-
hor ilustrar esse fato, pode-se considerar uma onda plana
confinada aos limites de uma caixa de aresta L (Figura 3)
levando em consideração os valores que função de onda
precisa assumir no contorno do seu domı́nio [57].

Figure 3. Caixa de normalização com largura L mostrando duas
ondas estacionárias ao longo do eixo x (curvas vermelhas).

Este é o já conhecido problema do poço de potencial,
que pode ser resolvido aplicando condições de contorno
periódicas nas bordas da caixa [6]. Então:

Ψn(±) = αn(±)e
− i

ℏ (p·x∓Epnt) (41)

onde pn = 2π
L n e n = (nx, ny, nz)

Para normalizar a função de onda é preciso integrar a
função de densidade (40) ao longo do volume da caixa:∫

L3

ρ(±) d
3x = ± eEpn

m0c2
|αn(±)|2L3 = ±e (42)

Dessa forma, a equação de onda plana no limite rela-
tiv́ıstico será expressa por:

Ψn(±) =

√
m0c2

L3Epn
e−

i
ℏ (p·x∓Epnt) (43)

O radical da constante que aparece do lado direito da
equação acima deixa claro que a função de onda possui
duas constante de normalização, uma positiva e outra
negativa. Como a soma das soluções de uma equação
diferencial também é uma solução da mesma [58], pode-
se concluir que a solução mais geral da equação de Klein-
Gordon para part́ıculas de spin-0 (podendo elas serem
positivas ou negativas) é expressa como

Ψn(±) =
∑
n

c(±)
n

√
m0c2

L3Epn
e−

i
ℏ (p·x∓Epnt) (44)

onde o valor de c
(±)
n deve ser calculado com base nas

condições de contorno da equação.
Porém, é importante observar que a função Ψ de Klein-

Gordon não possui componente real para part́ıculas de
carga neutra, caso em que Ψ∗ = Ψ na equação (34)
[9, 31]. Portanto, para obter uma função de onda que
descreva corretamente a part́ıcula neutra, basta somar as
soluções normalizadas obtidas na equação (44), ou seja:

Ψn(0) =
1√
2

[
Ψn(+)(pn) + Ψn(−)(−pn)

]
Obtendo assim a função

Ψn(0) =

√
2m0c2

L3Epn
cos

(
pn · x− Epnt

ℏ

)
(45)

Portanto, diante do que foi exposto, conclui-se que a
equação de Klein-Gordon é um modelo fundamental na
teoria quântica relativ́ıstica, pois mostra que uma teo-
ria dessa natureza conduz a novos graus de liberdade de
carga das part́ıculas, permitindo soluções para cada uma
delas, e para cada momentum p [31]. Vale mencionar
que uma descrição teórica mais ampla e robusta foi pro-
posta posteriormente por Paul Dirac para descrever as
part́ıculas de spin-1/2 [59].

VII. CONCLUSÃO

A equação de Klein-Gordon foi proposta em meados da
segunda década do século XX com o objetivo de combinar
duas recentes teorias da f́ısica: a mecânica quântica e a
relatividade especial. Embora inicialmente controversa,
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ela se tornou ferramenta fundamental para compreender
fenômenos de part́ıculas e a teoria quântica de campos.

Neste artigo de revisão, foi abordada uma discussão
de caráter introdutório ao formalismo da equação de
Klein-Gordon, fazendo um breve levantamento do con-
texto histórico em que ela foi proposta pela primeira vez
até suas implicações na Mecânica Quântica Relativ́ıstica.

O estudo apresentado mostrou como a equação de
Klein-Gordon foi capaz de descrever part́ıculas e an-
tipart́ıculas de spin-0 muito antes da existência destas
serem comprovadas por experimentos emṕıricos, ofere-
cendo insights profundos sobre as densidades de carga
negativa que emergem da teoria. Esses resultados rep-

resentaram um grande avanço no desenvolvimento da
f́ısica teórica como um todo e se mostraram cruciais em
aplicações práticas significativas, que vão desde a f́ısica
de part́ıculas até a cosmologia.

Portanto, o presente trabalho destaca a importância da
equação de Klein-Gordon no desenvolvimento da f́ısica,
mas enfatizando que ainda é preciso estabelecer conexões
mais profundas a fim de alcançar a tão ambicionada
teoria que unifique a relatividade geral e a mecânica
quântica. Espera-se que este artigo sirva como ponto de
partida para futuras pesquisas neste fascinante campo de
pesquisa cient́ıfica.
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