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Introducao ao Formalismo da Equagao de Klein-Gordon: Da Dedugao Relativistica as
Particulas de Spin-0

Hudson Rodrigues Armando,* Bill Darwin Aparicio Huacarpuma,
Willian Fabio Radel, and Rodrigo Alkimim Faria Alves

No inicio do século XX, as estruturas da Fisica foram abaladas pelo surgimento de duas teorias
revoluciondrias: a Relatividade Restrita e a Mecanica Quantica. Apesar dos desafios em conciliar
essas duas teorias, as tentativas de unificagdo deram origem a Mecanica Quantica Relativistica,
uma teoria capaz de descrever as particulas elementares em um regime de altas energias. Este
estudo se propoe a apresentar uma abordagem introdutéria a equacao de Klein-Gordon, uma das
primeiras tentativas em busca da referida unificacdo. Por meio de revisées da literatura existente
sobre o tema, foi apresentada uma dedugdo da Klein-Gordon partindo da equagao de onda de
Schrodinger para a particula livre. Apresentamos também a equagdo de Klein-Gordon nos limites
nao relativisticos, bem como as suas implicagoes na teoria quéntica relativistica, mostrando a sua
importancia na descrigao tedrica das particulas e antiparticulas de spin-0.
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I. INTRODUCAO

As trés primeiras décadas do século XX serviram de
palco a uma intensa atividade cientifica que revolucionou
a fisica. Em 1905, Einstein apresentou ao mundo a sua
teoria da relatividade especial [1] e, dez anos depois, as
equagoes de campo que constituem o cerne da sua Teoria
Geral da Relatividade [2]. Esta tdltima, ao incorporar a
gravidade em sua descricao da realidade fisica, tornou-se
um arcabougo tedrico de notavel elegancia matemaética
[3]. Uma década apés a inestimavel contribuigdo de Ein-
stein, em 1925, Bohr e Heisenberg apresentaram o formal-
ismo da mecénica matricial [4] para descrever a também
incipiente teoria quantica. Em 1926, Erwin Schrodinger
publicou um estudo onde aparece pela primeira vez a
ideia de usar uma fungao de onda [5] para descrever um
sistema quéntico evoluindo no tempo [6].

Proposta independentemente por Oskar Klein e Walter
Gordon em 1926, a equagao de Klein-Gordon [7, 8] surgiu
como uma tentativa de reconciliar a mecanica quéantica
com a relatividade especial de Einstein, visto que a teo-
ria de Einstein ja havia sido confirmada experimental-
mente e descrevia corretamente os fené6menos a veloci-
dades préximas a da luz no vacuo, o que demandava uma
modificacao da teoria quantica a fim de corrigi-la no lim-
ite relativistico [9, 10]. Embora a formulagdo inicial da
equacao de Klein-Gordon tenha enfrentado resisténcias

* hrodrigues1729@hotmail.com; Also at Instituto de Fisica, UnB.

devido as dificuldades de interpretacdo, nao demorou
muito para que ela se tornasse uma ferramenta crucial
para a compreensao de fendmenos fundamentais em difer-
entes contextos tedricos e experimentais, que vao desde
a fisica de particulas até a astrofisica [11, 12] (Figura 1).

Além de descrever particulas escalares de spin-0, a
equacgao de Klein-Gordon é usada na fisica de particulas
para modelar campos quanticos [13]. Na fisica nuclear
ela modela as particulas mediadoras de forgas nucleares
conhecidas como mésons [14]. Na astrofisica e cosmolo-
gia a equagao é usada em modelos de inflagao césmica e
matéria escura [15, 16]. Na relatividade geral aplicam-se
versoes generalizadas da equagao de Klein-Gordon para
campos escalares em espago-tempo curvos, compondo
modelos fundamentais para estudar a radigao de Hawking
no horizonte de eventos de buracos negros e a interacao
da gravidade com campos escalares [17, 18].

A equacao Klein-Gordon introduziu a nogao de um
campo quantico relativistico, possibilitando uma de-
scricado consistente das particulas neutras e carregadas,
incluindo bdsons intermedidrios responsaveis pela forca
eletromagnética e interagoes nucleares [23]. Além disso,
essa equacao teve um papel fundamental na previsao
tedrica de novas particulas, como o pion (méson-7), cuja
existéncia foi confirmada experimentalmente em 1947 por
Cecil Powel, César Lattes e Giuseppe Occhialini [24, 25].

Este artigo tem o objetivo de apresentar um estudo
tedrico introdutdrio sobre o formalismo da equagao de
Klein-Gordon. Inicialmente, serd realizada uma breve
introdugao a notagao tensorial, ferramenta indispensavel
para compreender o0s conceitos relativisticos da teo-
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Figure 1. Areas da Fisica em que a equagao de Klein-Gordon se
faz presente. [19-22].

ria. Em seguida, na secao III sera feita uma dedugao
da Equagao de Klein-Gordon a partir da equacao de
Schrodinger. Na sec@o IV, serd abordada a questdo do
limite nao relativistico da teoria, investigando como a
equacao de Klein-Gordon pode descrever particulas e
antiparticulas de spin-0. A relagdo entre a equagao de
Klein-Gordon e a Mecanica Quéantica Relativistica serd
explorada com mais detalhes na segao V, onde sera apre-
sentada uma interpretagao das densidade de carga nega-
tivas que surgem da teoria. Por fim, a segao VI discutird
uma aplicacdo da equacao de Klein-Gordon para descr-
ever particulas de spin-0.

II. NOTAGCAO TENSORIAL

Antes de abordar os preceitos bésicos para o desen-
volvimento de uma teoria quantica relativistica, é perti-
nente revisar alguns conceitos fundamentais da relativi-
dade restrita e da notacgdo tensorial [26-28].

O estudo da relatividade restrita pode ser abordado
através da definicao dos chamados quadrivetores, de
modo a garantir que a matriz das transformagoes de
Lorentz seja ortogonal [29]. Sob essas condigoes, nao ha
distingbes entre as diferentes representacoes. Para al-
cancar esse resultado, é necessario incluir a componente
temporal como um ntmero imaginario.

Seja ¥ um quadrivetor no espago de Minkowski com
componentes (zg,x1, T2, z3) onde xg = ict (componente
temporal) e x1 = x, xo = y e x3 = z correspondem
as componentes espaciais do espago euclidiano tridimen-
sional [30].

Para dois quadrivetores arbitrarios a e 3, pode-se es-
tabelecer uma operacao de contracdo definida como

3
Z arB, = atB, (1)

pn=0

onde o** é um vetor covariante, 8, um vetor contravari-
ante e y um indice que varia de 0 a 3.

Essa operagao de “levantamento” e “abaizamento” de
indice é intermediada pelo tensor métrico do espaco-
tempo de Minkowski 7, definido como

10 0 0
0-10 0

M =10 0 -1 0 @)
00 0 -1

onde os indices p e v variam de 0 a 3 [10].

A forma contravariante de 7, é representada por n*¥
[31], de tal forma que o produto de ambos resulta numa
fungao delta:

N Ny = 0l (3)

OO O
oo = O
o= OO
= O OO

As componentes espaciais de z# compoem um vetor r,
ou seja, " = (ct,r) e x, = (ct, —r). Portanto

atz, =P —r? 4)

que caracteriza a distancia entre dois eventos no espaco
tempo [32, 33].

Dessa forma, é possivel definir o comprimento do ten-
sor quadridimensional através da relacao:

ds® =, datdz, (5)

Definindo =, = nu,2", a equacao (5) pode ser escrita
de uma forma mais conveniente:

ds® = dz, dz" = da*dz, (6)

III. DEDUCAO DA EQUACAO DE
KLEIN-GORDON

A equagdo de Schrodinger pode ser utilizada para de-
screver a evolugao temporal de uma particula livre de
massa m [34]:

0T
ihy = HY (7)

onde H é o operador hamiltoniano nao-relativistico

n_,
H=-—V 8
o (8)
Assim, com o operador H acima inserido na equagao
(7), obtém-se a conhecida equagido de Schrodinger para
uma particula livre:

m(‘?\Il(r,t)

= —h—2V2\Il(r t) (9)
o 2m ’
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A evolugao temporal da particula relativistica pode ser
estudada usando o hamiltoniano

H = \/p?c? + m3c? (10)

Dessa forma, a equagao (9) assume a forma

_0U(r,t)

ALY} _B2e2V2 2.4
ih 5 —\/ h2e2V2 + mgct U(r,t)  (11)

Uma solugao possivel para contornar o radical que en-
volve o operador consiste em aplicar o hamiltoniano (10)
novamente em ambos os lados da equagdo (11), resul-
tando em

0%V (r,t)

—hQT = (=h*c*V? + mic?) U(r, t)

que pode ser reescrita como

1 0? 5  maict

A expressao (12) é covariante sob transformagoes de
Lorentz e constitui a equacao de onda relativistica de
Klein-Gordon para uma particula livre com spin-0 [35,
36]. Essa expressao exibe notdveis semelhancas com uma
equacdo de onda cldssica (exceto pelo m2) onde o termo
independente introduz uma escala de comprimento fi/mc,
conhecida como o comprimento de onda de Compton [37].

Devido as diferengas fundamentais entre o espago eu-
clidiano e o espago-tempo relativistico, o operador lapla-
ciano V2 [38] assume uma forma distinta no espago de
Minkowski, onde é conhecido como d’Alembertiano [J
[39]. Este operador é um covariante de Lorentz definido
por:

1 92

H=VViu=G5m

% (13)
Portanto, expressando a equagéo de Klein-Gordon (12)
em termos do operador d’Alembertiano, obtém-se:

2.2

<D+m}§; >x1/0 (14)

O operador [0 também é util para descrever o oper-
ador quadri-momentum p* de forma mais conveniente
no espaco de Minkowski [40] e reescrever a equacao de
Klein-Gordon em termos desse operador. Assim, seja o
vetor quadri-momentum

E
Pt = {Cmmpy,pz} (15)

Usando a expressao da energia relativistica presente no
radical da equagdo (10) e a propriedade expressa em (4),
o produto de p* pela sua forma covariante resulta em

P'py=— —p-P=mje (16)

De forma analoga, o operador quadri-momentum p+
dado por

0
pf = ih— = ihVH#
P ozH
pode ser aplicado a sua forma covariante p,, resultando
em

Pp = —h*VHVY, = —h*0 (17)
Assim, reescrevendo a equagao (14) como
—h20V = m3c*¥

E comparando com a expressao (17), o resultado obtido
é novamente a equacao de Klein-Gordon:

PP = mic* ¥ (18)

A equagdo de Klein-Gordon apresenta algumas das
caracteristicas desejaveis em uma equagao de onda rel-
ativistica como, por exemplo, a sua natureza relativisti-
camente covariante devido & invariancia do intervalo do
espago-tempo sob transformacoes de Lorentz [41]. Isso
implica diretamente na consisténcia das derivadas pre-
sentes na equacao (12), independentemente da mudanga
de referencial.

IV. O LIMITE NAO RELATIVISTICO

Na secao III, a equacdo de Schrodinger para uma
particula livre relativistica foi utilizada para deduzir a
equagao de Klein-Gordon. O objetivo agora é analisar
a equacao de Klein-Gordon no limite nao relativistico,
a fim de verificar se é possivel reduzi-la & equacao de
Schrodinger. Este exame é fundamental para compreen-
der a relagao entre os regimes relativistico e nao rela-
tivistico e para confirmar se as duas equacoes sao consis-
tentes sob diferentes condigoes fisicas [42].

Uma estratégia 1itil para cumprir o objetivo proposto
consiste em determinar uma fungao de onda W composta
de dois termos, de tal forma que em um deles esteja in-
serido a massa de repouso my [31, 43]. Dessa forma, seja
U(r,t) a seguinte funcao de onda:

U(r,t) = (r, t)e hmoc’t (19)

Calculando a derivada da fungao (19) em relagdo ao
tempo e multiplicando ambos os lados da equacao resul-
tante por ih:

ov(r,t 0 i
zh# = (Zh£ + m002¢> e~ Rmoc’t (20)
onde ih%—‘f =F %

No entanto, partindo da fungao (19), é possivel demon-
strar que, no limite nao relativistico, a energia F da




V EQUACAO DE KLEIN-GORDON E A MECANICA QUANTICA RELATIVISTICA

particula difere minimamente de sua massa de repouso
[31]. Ou seja, ao considerar que

E' = E —myc? (21)

conclui-se de imediato que energia cinética E’ é nao rel-
ativistica, pois B/ < mgoc?.

Dessa forma, a equagdo expressa em (20) pode ser
aproximada com grande exatidao pela expressao

ov(r,t) _im002
ot~ h

e~ Hmoctt (22)

Derivando novamente a equagao (20) em relagdo ao
tempo, pode-se também obter uma boa aproximacao
dada por

O*W(r,t) 2imoc? 6(;5 m3

o2 no ot

o) it (2

que, por sua vez, pode ser escrita como

82\11(7‘, t) . _i QimocQQ m(2)04 ¢€_%moc2t (24)
o 2 ho ot h?
Dessa forma, inserindo o resultado (24) na equagao
(14), obtém-se

8(25 n _,
(‘% 2m0 v ¢) (25>
O resultado expresso em (25) é a equagdo de
Schrodinger para particulas livres de spin-0. A funcao de
onda ¢ dessa equacao nao depende de a particula descrita
ser relativistica ou nao, o que induz a conclusao imediata
de que a equagao de Klein-Gordon descreve particulas e
antiparticulas de spin-0 [9, 31].

V. EQUACAO DE KLEIN-GORDON E A
MECANICA QUANTICA RELATIVISTICA

Seja U(r,t) uma funcdo de onda relativistica:
U(r,t) = ae~ HFPT) — qe=##" 7 (9)

onde « é uma constante de normalizagao.
Ao substituir a funcdo de onda (26) na equacao (14)

2.2 .
(D 1 B0 ) ae~#P" =

hQ

obtém-se

B2 2 2.2 .
(—hQCQ + )ae—np -0 (@7

Assim, ao igualar a zero o termo entre parénteses da
equagdo (27), obtém-se uma expressdo para a energia da

particula livre relativistica que é semelhante & obtida em

(10).
E = +4/p*c® + mict (28)

O resultado da expressao (28) é inicialmente contrain-
tuitivo dentro da mecéanica quantica, uma vez que pos-
sibilita a equacao de Klein-Gordon a obtencao energias
negativas. Essa possibilidade por si s6 induz a neces-
sidade de se revisar o conceito de funcao de onda rel-
ativistica. No entanto, foi descoberto posteriormente
que as solucoes associadas a energias negativas estao
fisicamente relacionadas a antiparticulas e, portanto, a
equagao de Klein-Gordon oferece um vislumbre valioso
sobre os possiveis valores de energia dessas entidades
fisicas exdticas [31].

Uma forma de abordar esse problema consiste em en-
contrar uma lei de conservagao para o quadrivetor de den-
sidade de fluxo j, adequado a equacao de Klein-Gordon
(18).

No contexto de sistemas nao relativisticos, a densidade
de fluxo de probabilidade j [44] pode ser obtida pela
expressao

dp
ot
onde p é a densidade de probabilidade (uma varidvel pos-
itiva por defini¢do). Essa equagdo 29 garante que a prob-
abilidade dentro de um sistema fechado permanece con-

stante ao longo do tempo [45].
Reescrevendo a Klein-Gordon obtida em (18) na forma

("D — M) W =0 (30)
cujo complexo conjugado é
(PP — mic®) ¥* =0 (31)

Agora, aplicando ¥* em ambos os lados da equagao
(30), procedendo da mesma forma com ¥ em relacdo a
equagdo (31) e subtraindo as expressoes resultantes:

=-V-j (29)

‘IJ*(ﬁpu—mOc)\Il ‘If(ppu—moc)\l'*—()
Da equagao (17), tém-se

—U* (RPV,V* +mic®) ¥+ W (B*V, V¥ + mic?) U* =0

Portanto
V" =V, (U*VHAT — OVHAT*) =0 (32)

Ao multiplicar o lado direito da equagao (32) pela con-
stante ih/2mg, garante-se que o termo jy no quadrifluxo
é constante e possui dimensao de densidade de probabil-
idade. Essa constante na equagao assegura a existéncia
de um limite néo relativistico, resultando no quadrifluxo
de densidade expresso por:

ih

Qmo(\yv U —UV,0*) =0 (33)

Ju =
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Efetuando a derivada temporal da quadri-corrente j*,
obtém-se uma expressao de densidade. Isso ocorre porque
a equagao de Klein-Gordon é uma equagao de segunda or-
dem na derivada temporal, o que significa que a derivada
temporal da quadri-corrente é diretamente relacionada a
densidade de probabilidade p e a densidade de corrente
7 [46, 47]. Assim, a equacao de continuidade (29) pode

Ser expressa Como
ih 0 0

)= —— (V" =¥ - V-V~ 34

ple.t) 2mgc? ( ot ot ) (34)

Apesar das expressoes (33) e (34) ndo conduzirem
diretamente a uma interpretacdo probabilistica na for-
mulacao de Klein-Gordon, é possivel multiplicd-las pela
carga e fazendo com que as quantidades resultantes desse
produto possam ser entendidas como uma densidade de
carga p'(z,t) e de corrente de carga j'(z,t) [40, 48].

, ihe L 0 d _,
)=——= V" V-V -V" 5
pla.t) 2mgc? ( ot ot ) (35)
_ ihe N N
= e (IV,0" —T*V,0) (36)

As funcoes p'(z,t) e j, representam, respectivamente,
a distribuicao de carga elétrica em um ponto no espacgo-
tempo e a taxa de fluxo de carga elétrica por esse ponto.
Nas fungdes expressas em (35) e (36), a carga elétrica e
foi usada para normalizar as quantidades p(z,t) e j(z,t),
tornando possivel a interpretacao das fungoes resultantes
em termos de densidade de carga e corrente.

Além disso, é importante notar que o produto pela
carga elétrica e permite que a funcdo p'(z,t) assuma
valores positivos, negativos e nulos, dependendo da na-
tureza da carga. Essa variagao de valores é consistente
com a previsao tedrica da existéncia de particulas e an-
tiparticulas, uma vez que as cargas positivas e negativas
podem estar distribuidas no espago [49].

Para aprofundarmos um pouco mais essa inter-
pretagao, ao substituir a fungao de onda relativistica sug-
erida na equacdo (26) na funcao de densidade de carga
obtida em (35) chega-se na expressao:

elE| L.
Pl(xvt)(i) = im‘l’(i)q’(i) (37)

A nova equacao para densidade de carga expressa em
(37) fornece uma interpretagdo mais clara sobre o sig-
nificado das suas solugoes. Assim, a funcao W) de-
screve particulas com massa de repouso mg e carga +e,
enquanto W _y representa algo com a mesma massa, mas
com carga oposta —e, ou seja, as antiparticulas.

O hamiltoniano usado para descrever a interagao en-
tre particulas e campos eletromagnéticos, estabelece uma
correspondéncia direta entre as solucoes de energias com
suas cargas correspondentes [35]. Essa simetria sug-
ere que as solugoes de energia negativa representam an-
tiparticulas, ou seja, entidades fisicas que possuem a

mesma massa das particulas mas com cargas opostas, re-
forgando a teoria que prevé a existéncia de antimatéria.

Em 1932, o fisico estadunidense Carl David Anderson
confirmou experimentalmente essa previsao ao descobrir
o pésitron (antiparticula do elétron) apés os trabalhos de
Dirac [50]. Essa descoberta lhe rendeu o Nobel de Fisica
em 1936 (aos 35 anos de idade!) [51], validando a teoria
quéntica relativistica.

VI. PARTICULAS LIVRES COM SPIN-0

O spin é uma propriedade quantica intrinseca das
particulas elementares que, apesar de nao possuir um
analogo cldssico, costuma ser comparado com o movi-
mento de “rotagao” das particulas, uma vez que o spin
se manifesta como um momento angular quantizado cu-
jos operadores satisfazem as propriedades de uma algebra
de Lie [52-54].

As particulas de spin-0 nao possuem uma orientagao
de “rotagao” especifica, como ocorre no caso dos elétrons
(férmions de spin-1/2) ou fétons (bdésons de spin-1)
(Figura 2). Dessa forma, as particulas de spin-0 sdo con-
sideradas como particulas escalares por serem invariantes
sob transformagoes de rotagao [55].

S spin =0 spin=1,2,3,---

spin =

L]

71:

9

I
N
N ot

R

(%3

Bosons

Figure 2. Representagao dos spins de férmions e bésons.

Apesar de nao existirem particulas com spin-0 estaveis
na natureza, elas desempenham um importante papel na
compreensao de uma série de fendmenos fisicos, sobre-
tudo na fisica de particulas e na cosmologia. Como ex-
emplo de tais particulas pode-se citar os Pions e Kéons,
que sao mésons formados por um quark e um antiquark.
Essas particulas possuem um papel crucial na interacao
forte entre hédrons [45, 56].

Nesta segao, serd apresentada uma das mais notaveis
aplicagbes da Equagdo de Klein-Gordon: as particulas
com spin-0. Mesmo sabendo que no ambito de uma teoria
relativistica a ideia de uma particula livre ser uma mera
abstragao, é possivel lidar com esse conceito estudando
as solugoes livre da equagao (18).

O estudo realizado na secao anterior mostrou como,
a partir da densidade de corrente, foi possivel deduzir
uma expressao para a densidade de carga que tenha sig-
nificado fisico quando assume valores positivos, nega-
tivos ou nulos. No entanto, calculando as solugoes para
particulas livres, pode-se chegar a uma compreensao mais
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abrangente a respeito da existéncia de particulas e an-
tiparticulas no ambito da teoria [31].

Partindo da equagao de Klein-Gordon expressa em
(18), pode-se afirmar que

PTI 22 _ 2 2 22
pup” —MyC” =Py — P —MyC
Sabendo que py = E/c [1], chega-se & conclusao de que
o momentum p possui duas solugoes possiveis, uma com
a energia positiva e a outra negativa dada por

E, = +c\/p? + m3c? (38)

Assim, a fung@o de onda relativistica proposta anteri-

ormente na equagao (26) serd expressa como

Uy = a(i)e*%(p-wﬂFlEp\t) (39)
onde () é a constante de renormalizagao a ser definida
posteriormente.

Inserindo as equagoes (38) e (39) na expressao de-
duzida anteriormente para a densidade de carga p'(z, 1)
(35), torna-se possivel reescrever a equagio (37) eviden-
ciando a energia E,, ou seja:

e|lE

Na secao anterior, foi feita a discussao sobre a inter-
pretacao das solugoes dessa equagao poderem ser positi-
vas, negativas ou nulas. Além disso, é preciso mencionar
que a solugao geral da equagao de onda é sempre uma
combinagao linear das possiveis solugoes [31]. Para mel-
hor ilustrar esse fato, pode-se considerar uma onda plana
confinada aos limites de uma caixa de aresta L (Figura 3)
levando em consideracao os valores que fungao de onda
precisa assumir no contorno do seu dominio [57].

AZ

~~——
o2l ==

-

Figure 3. Caixa de normalizagdo com largura L mostrando duas
ondas estaciondrias ao longo do eixo = (curvas vermelhas).

Este é o ja conhecido problema do poco de potencial,
que pode ser resolvido aplicando condigoes de contorno
periédicas nas bordas da caixa [6]. Entao:

U4y = an(i)efé(pﬂE""t) (41)

onde p,, = Q%n en = (ng,ny,n)

Para normalizar a funcao de onda é preciso integrar a
fungao de densidade (40) ao longo do volume da caixa:

ek
dBr = £ —% |y, PL? = *e 42
/Ls P(&) o ()| (42)

Dessa forma, a equagao de onda plana no limite rela-
tivistico serd expressa por:

moc2

— £ (P-zFEpnt) 43
L3Epn € ( )

Upt) =

O radical da constante que aparece do lado direito da
equagao acima deixa claro que a funcao de onda possui
duas constante de normalizacao, uma positiva e outra
negativa. Como a soma das solugbes de uma equacao
diferencial também é uma solugdo da mesma [58], pode-
se concluir que a solugao mais geral da equagao de Klein-
Gordon para particulas de spin-0 (podendo elas serem
positivas ou negativas) é expressa como

moc? i,
wn(iFZcf)v DPEp FEEEEa)(44)
n

onde o valor de c;i) deve ser calculado com base nas
condigoes de contorno da equagao.

Porém, é importante observar que a funcao ¥ de Klein-
Gordon nao possui componente real para particulas de
carga neutra, caso em que ¥* = ¥ na equacao (34)
[9, 31]. Portanto, para obter uma fungdo de onda que
descreva corretamente a particula neutra, basta somar as
solugdes normalizadas obtidas na equagao (44), ou seja:

1
U0y = 7 [V, (Pn) + V(o) (—p0)]

Obtendo assim a funcao

2mpc? Pn T — Ey it
Yn(o) =4/ 3B, (hp> (45)

Portanto, diante do que foi exposto, conclui-se que a
equacao de Klein-Gordon é um modelo fundamental na
teoria quantica relativistica, pois mostra que uma teo-
ria dessa natureza conduz a novos graus de liberdade de
carga das particulas, permitindo solucoes para cada uma
delas, e para cada momentum p [31]. Vale mencionar
que uma descricao tedrica mais ampla e robusta foi pro-
posta posteriormente por Paul Dirac para descrever as
particulas de spin-1/2 [59].

VII. CONCLUSAO

A equagao de Klein-Gordon foi proposta em meados da
segunda década do século XX com o objetivo de combinar
duas recentes teorias da fisica: a mecéanica quantica e a
relatividade especial. Embora inicialmente controversa,
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ela se tornou ferramenta fundamental para compreender
fenémenos de particulas e a teoria quantica de campos.

Neste artigo de revisao, foi abordada uma discussao
de carater introdutério ao formalismo da equacao de
Klein-Gordon, fazendo um breve levantamento do con-
texto histérico em que ela foi proposta pela primeira vez
até suas implicacoes na Mecanica Quantica Relativistica.

O estudo apresentado mostrou como a equagao de
Klein-Gordon foi capaz de descrever particulas e an-
tiparticulas de spin-0 muito antes da existéncia destas
serem comprovadas por experimentos empiricos, ofere-
cendo insights profundos sobre as densidades de carga
negativa que emergem da teoria. Esses resultados rep-

resentaram um grande avanco no desenvolvimento da
fisica tedérica como um todo e se mostraram cruciais em
aplicacoes praticas significativas, que vao desde a fisica
de particulas até a cosmologia.

Portanto, o presente trabalho destaca a importancia da
equagao de Klein-Gordon no desenvolvimento da fisica,
mas enfatizando que ainda é preciso estabelecer conexoes
mais profundas a fim de alcancar a tao ambicionada
teoria que unifique a relatividade geral e a mecanica
quantica. Espera-se que este artigo sirva como ponto de
partida para futuras pesquisas neste fascinante campo de
pesquisa cientifica.
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