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R. A. Miranda†

Plasma Physics Laboratory, Institute of Physics,
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In fusion plasma, numerical simulations are commonly employed to investigate the confinement
properties of plasma in the bulk region of tokamaks. The modified Hasegawa-Wakatani (MHW)
equations are used to model the behavior of the plasma, which enables us to understand the radial
transport in two-dimensional numerical simulations of electrostatic resistive drift-wave turbulence.
By utilizing the MHW equations, we have gained insights into the low-to-high confinement (L-
H) transitions that occur spontaneously in the plasma when it moves from a low confinement
stage, characterized by turbulent flow, to a turbulence-suppressed regime known as zonal flow.
To investigate these transitions, we vary the value of a control parameter α, which is related to
adiabaticity, in numerical simulations, and observe the transition between the two regimes. This
simplified model of L-H transitions can provide valuable information for tokamaks. To identify the
Lagrangian coherent structures (LCS) and to better characterize the chaotic mixing during the L-H
transition, we computed the finite-time Lyapunov exponent (FTLE) of the calculated velocity field
derived from the electrostatic potential. We further compared the statistics of the chaotic mixing
of the two regimes. The results of our study offer insights into the turbulent transport processes in
magnetic confinement fusion plasmas.

Keywords: modified Hasegawa-Wakatani (MHW), Low-to-high confinement (L-H), Lagrangian coherent
structures (LCS), finite- time Lyapunov Exponent (FTLE), probability distribution functions (PDFs).

I. INTRODUCTION

The world’s energy dependency has been rapidly in-
creasing due to global population growth and industria-
lization. One raising concern, as a result, is the energy
supply, with fossil fuel being a finite resource and a ma-
jor contributor to climate change. There is an escalating
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need for a clean, safe, carbon-neutral, and politically neu-
tral form of electricity generation [1]. Nuclear fusion has
been recognized as an alternative solution for the energy
dependency problems, as well as for climate change.

Nuclear fusion in nature occurs in the interior of stars.
The Sun is powered by fusion reactions, which is when
the nuclei fuse together, and produces a mass that is less
than the mass of the reactants combined. This small
mass loss is due to the energy that is released [1]. There
are two main ways to recover the energy from the fusion
collision: magnetic confinement and inertial fusion [2].
A tokamak is a fusion reactor that focuses on extracting
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this energy using magnetic confinement.
In a more detailed explanation of how magnetic con-

finement works, it has been explained that the process
takes advantage of the charge of plasma particles and at-
tempts to design a magnetic field to confine plasma [1]. A
plasma is an ionized gas or a quasineutral gas of charged
and neutral particles which exhibits collective behavior
[2]. As such, the plasma serves as the fuel that is required
for fusion to occur.

When researching fusion plasma, the turbulent proces-
ses are a significant challenge, particularly in the radial
transport at the edge of a tokamak [3]. A fundamental as-
pect of fusion research is to comprehend the dynamics of
the turbulent radial flux of particles and heat in magne-
tized plasmas, as it can lead to enhancements in the con-
finement properties of fusion devices, including tokamaks
[4]. Numerical simulations are a useful tool to model this
behavior and determine the overall plasma confinement
properties in the bulk region. The Hasegawa-Wakatani
equations facilitate understanding of the radial transport
through two-dimensional numerical simulations of elec-
trostatic resistive drift-wave turbulence.

We carried out numerical simulations to gain a better
understanding of low-to-high confinement (L-H) transiti-
ons, a phenomenon observed in fusion plasmas. The L-H
transitions occur spontaneously as the plasma transits
from a low confinement stage, known as turbulent flow,
to a turbulence-suppressed regime referred to as zonal
flow, which is associated with the high confinement stage.
This transition holds immense significance due to its abi-
lity to improve the confinement, and therefore studying
L-H transitions presents an opportunity for confinement
enhancement [5]. In addition, we compute the finite-
time Lyapunov exponent (FTLE) to detect the Lagran-
gian coherent structures (LCS) and, as a result, provide
a more comprehensive characterization of the chaotic mi-
xing during the L-H transition.

This paper is organized as follows. Section II descri-
bes the model employed and the numerical tools. The
numerical results are presented in Section III, and the
conclusion is given in Section IV.

II. COMPUTATIONAL METHODS

A. Modified Hasegawa-Wakatani (MHW)
equations

We executed numerical simulations using a simplified
model of a tokamak plasma, which accounts for the in-
fluence of the zonal component, based on the modified
Hasegawa-Wakatani (MHW) equations [5]

∂

∂t
ζ + {φ, ζ} = α (φ̃− ñ)−D∇4ζ, (1)

∂

∂t
n+ {φ, ζ} = α (φ̃− ñ)− κ

∂φ

∂y
−∇4n, (2)

where the physical setting of the model is of a toka-
mak plasma in a constant magnetic field equilibrium
B = B0∇z, and a nonuniform density n0 = n0(x) in
the edge region. The equations (1) and (2) contain pa-
rameters {a, b} which denote the Poisson bracket, n re-
presenting the density fluctuations, and the ion vorti-
city ζ ≡ ∇2φ which is a 2D Laplacian depending on
the electrostatic potential (φ). The background density
κ ≡ (∂/ ∂x) lnn0 has an unchanging exponential profile
and is constant, while D represents the dissipation coef-
ficient. The adiabaticity operator α is set as a constant
coefficient in this physical configuration [5].
The MHW equations are obtained by subtracting the

zonal components from the resistive coupling term, which
results in α(φ−n) becoming α (φ̃− ñ). The velocity field
equations are derived from the electrostatic potential (φ)
[5]

vx ≡ −∂φ̃

∂y
, (3)

vy ≡ ∂φ̃

∂x
. (4)

The particle density flux Γr, is a correlation between the
particle density (n) and radial velocity (vr = -∂φ̃/ ∂y)
[4]

Γr = < nvr > . (5)

In this model the radial direction is represented by the x
direction, therefore vr ≡ vx.

B. Finite-time Lyapunov Exponents (FTLE)

The analysis of chaotic mixing properties of fluids is
carried out through the computation of the finite-time
Lyapunov Exponent (FTLE) and subsequent observation
of the resulting Lagrangian coherent structures (LCS)
that emerge from the velocity field. The LCS can be
defined as ridges within the FTLE fields, which repre-
sent special gradient lines transverse to the direction of
minimum curvature [6].
The FTLE is defined as a finite time average of the

maximum expansion rate for a pair of particles that are
advected in the flow [6]. Another definition, describes
the Lyapunov exponent as a measure of the sensitivity of
a fluid particle’s future behavior [7].To define the FTLE
mathematically, we must first consider the evolution of

a perturbed point −→x
′
= −→x + δ−→x , where δ−→x is infini-

tesimal and arbitrary oriented. After an interval τ , this

perturbation becomes, δ−→x = −→x
′
−−→x ,

δ−→x τ = ϕt0+τ
t0

(−→x ′)
− ϕt0+τ

t0 (−→x ) , (6)
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where the flow map is denoted as ϕt0+τ
t0 and can be ex-

panded into a Taylor series in the neighborhood of −→x ,

ϕt0+τ
t0

(−→x ′)∣∣∣−→x = ϕt0+τ
t0 (−→x )

+
dϕt0+τ

t0

d−→x

∣∣∣∣∣−→x
(−→x ′

−−→x
)
+ . . .

≈ ϕt0+τ
t0 (−→x ) +

dϕt0+τ
t0

d−→x

∣∣∣∣∣−→x
(−→x ′

−−→x
)

. (7)

The finite-time Cauchy-Green deformation tensor is
defined as,

Ct0+τ
t0 =

(
dϕt0+τ

t0

d−→x

)τ [
dϕt0+τ

t0

d−→x

]
. (8)

The eigenvectors of Ct0+τ
t0 as

−→
ξ 1 and

−→
ξ 2, with corres-

ponding eigenvalues λ1 > λ2 satisfying,

Ct0+τ
t0

−→
ξi = λi

−→
ξ i, i = 1, 2, (9)

and
∥∥∥−→ξ i

∥∥∥ = 1. In addition, it is supposed that the per-

turbation δ−→x is aligned with
−→
ξ 1 (being the maximum

deformation),

δ−→x 0 = ∥δ−→x 0∥
−→
ξ 1 . (10)

From Equations (9) and (10),

δ−→x τ =
√
λ1 ∥δ−→x 0∥ . (11)

Finally, the definition of the FTLE can be derived from
Eq. 11 [6],

σt0+τ
t0 (−→x ) =

1

|τ |
ln
√
λ1 , (12)

where the largest FTLE is given by Eq. 12 and can be
computed for both positive and negative integration ti-
mes (τ) due to the absolute value operation. The positive
integration time is a forward-time integration that reve-
als a repelling LCS [6].

III. SIMULATION RESULTS

To solve the MHW equations, we employ a finite diffe-
rences method with a grid resolution of 256x256, imple-
mented via a Fortran code. For computing the FTLE, we
use a C code with a grid resolution of 1024x1024. The
obtained results from both methods are then visualized
and analyzed using MATLAB, which facilitates the com-
putation of probability density functions (PDFs) values.
This approach provides an understanding of the dyna-
mics underlying the MHW and FTLE phenomena.

A. Modified Hasegawa-Wakatani (MHW)

In Figure 1, we can see the electrostatic potential (ϕ)
obtained from a simulation using a Fortran code. This
simulation used the finite differences method to solve the
MHW equations. The resulting solutions were impor-
ted into MATLAB with a 256x256 grid resolution for a
detailed representation of the electrostatic potential.
The left panel of Figure 1 displays the patterns of ϕ

in the turbulent regime, where as the right panel of Fig.
1 shows the patterns of ϕ in the zonal flow regime. The
patterns were obtained by setting the value of the adia-
baticity parameter α = 0.010 (turbulent regime) and α
= 0.018 (zonal flow regime).

Figure 1. The electrostatic potential in the turbulent regime
(left panel) and zonal flow (right panel).

A transition from L-H regimes in tokamaks can be mo-
deled by varying the control parameter α, related to adi-
abaticity [5]. This simplified model, depicted in the left
and right panels of Figure 1, provides insight into the
behavior of tokamaks under different confinement condi-
tions. The left panel represents low confinement, while
the right panel represents high confinement.
Figure 1 illustrates that the zonal flow in tokamaks

exhibits a zonally elongated structure of ϕ. This struc-
ture arises due to the Kelvin-Helmholtz instability of the
drift waves, which effectively suppresses drift wave acti-
vity [5]. As a result, the zonal flow has high confinement
properties, making it an important factor in understan-
ding plasma turbulence and confinement in tokamaks.

Table I. Numerical values of Γr for the two regimes

Turbulent regime 1.4110

Zonal flow -0.07577

Table 1 presents the computation of the radial flux (Eq.
5) for the turbulent and zonal flow regimes across the
entire simulation domain. The results display that the
turbulent regime exhibits a higher radial flux value than
the zonal flow regime. This observation is expected, since
the elongated patterns of the zonal flow act as transport
barriers for the flow.
The patterns of ϕ depicted in Fig. 1 can give a hint of
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the presence of coherent structures. For example, vorti-
ces are related to regions of localized minima and maxima
of ϕ. These regions can be easily recognized in the turbu-
lent regime. However, the detection of structures based
on snapshots of velocity fields (i.e. an Eulerian approach)
can give misleading results [7]. Coherent structures can
be objectively detected using a Lagrangian approach.

B. Finite-time Lyapunov Exponents (FTLE)

Figure 2 depicts the detected LCS obtained from the
FTLE (σt0+τ

t0 ) using velocity fields. These solutions are
then imported into MATLAB to create the images shown
in Figure 2, with a 1024x1024 grid resolution, allowing
for a detailed representation of the LCS.

Figure 2. The FTLE in the turbulent regime (left panel) and
zonal flow (right panel).

Figure 2 provides a more detailed understanding of the
locations of the transport barriers (LCS). The barriers
are displayed using a color gradient, with stronger barri-
ers appearing in yellow and weaker ones in blue. When
comparing both images (in Figure 2),it becomes evident
that a higher number of strong barriers are present in the
turbulent regime (left panel), as to be expected.

While contrasting Figures 1 and 2, it is evident that
Figure 2 provides a clearer visualization of the locations
of the barriers formed. The overlapping images, from
Figure 1 into Figure 2, reveal that not every localized
maximum or minimum of ϕ from Figure 1 corresponds
to a vortex. Moreover, the definition of vortex boundaries
using ϕ patterns can be a difficult task. These boundaries
are clearly marked by ridges of the FTLE field. This
observation suggests that the FTLE is more effective at
detecting vortices when compared to visual inspection of
the electrostatic potential.

The probability distribution functions (PDFs) of the
FTLE, as depicted in Figure 2, are presented in Figure
3. Broad PDFs have been linked to heterogeneous mi-
xing in previous studies [8]. The PDFs in Figure 3 reveal
that the turbulent regime has a more heterogeneous mi-
xing pattern than the zonal flow regime. This is evident
from the broader PDFs of the turbulent regime than in
comparison to the corresponding PDFs of the zonal flow.

The difference in mixing can be attributed to the fact
that the zonal flow is a regime of high confinement that
suppresses turbulent transport [5],

Figure 3. PDFs of (Red) Turbulent regime versus (Blue)
Zonal flow.

IV. CONCLUSION

In summary, our study focused on numerical simulati-
ons of the modified Hasegawa-Wakatani equations, exa-
mining two distinct regimes: one characterized by tur-
bulence dominance and another characterized by zonal
flow. To gain insight into the flow’s turbulent mixing
properties, we employed finite-time Lyapunov exponents
(FTLE), a commonly used tool for Lagrangian analysis of
turbulent fluids. Our analysis, based on the construction
of probability distribution functions (PDFs), led to the
conclusion that the turbulent regime displayed a more he-
terogeneous mixing behavior than the zonal flow regime,
which is consistent with the high-confinement regime as-
sociated with the zonal flow. The techniques and insights
gained from our study may aid in the comprehension of
drift-wave induced turbulence in tokamak plasmas.
The computation of the FTLE represents a simple te-

chnique for the detection of Lagrangian coherent struc-
tures based on ridges of the resulting field. It has been
demonstrated that ridges of the FTLE field can lead to
inconsistent results [9]. For this reason we are curren-
tly applying more advanced techniques such as geodesic
theory [10] for a future work.
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