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A quick guide to spacetime symmetry and symmetric solutions in teleparallel gravity

Christian Pfeifer∗

ZARM, University of Bremen, 28359 Bremen, Germany

The notion of spacetime symmetry is essential to describe gravitating physical systems like planets,
stars, black holes, or the universe as a whole, since they possess, at least to good approximation,
spherical, axial, or spatially homogeneous and isotropic symmetry, respectively. This article gives
a quick overview over the known facts on spacetime symmetries in teleparallel gravity. The most
general spherical, axial, or spatially homogeneous and isotropic tetrads in Weitzenbc̈k gauge are
presented and a brief discussion about symmetric solutions of the anti-symmetric field equations in
f(T,B, ϕ,X)-gravity is given. The article summarizes the authors presentation on this topic at the
X. Roberto A. Salmeron School of Physics (EFRAS) in Brasilia, which can be watched online [1].

I. TELEPARALLEL GRAVITY

Teleparallel gravity offers a fascinating way of reformu-
lating general relativity as a gauge theory of translations,
as well as multiple ways to search for generalizations and
extensions of Einstein’s theory of gravity. These cons-
tructions become possible by the use of teleparallel ge-
ometry to formulate the dynamics of the gravitational
interaction, instead of pseudo-Riemannian geometry.

Teleparallel geometry describes the geometry of a ma-
nifold in terms of a tetrad and an independent flat and
metric compatible connection; instead of employing a me-
tric and its Levi-Civita connection as it is usually done
when one studies general relativity. We will start this
overview article in this section by introducing the ba-
sic mathematical notions of teleparallel geometry and
f(T,B, ϕ,X)-gravity.

A key ingredient to simplify the derivation of the gra-
vitational field of gravitating physical system is to use
their symmetries and to search for symmetric solutions
to a theory of gravity. For general relativity, and all
theories of gravity which are based on a Lorentzian me-
tric alone, symmetries are implemented by the existence
of Killing vector fields, i.e. vector fields along which the
psuedo-Riemannian geometry is invariant. In teleparallel
gravity, which is based on teleparallel geometry a gene-
ralized Killing equation is needed which is a necessary
and sufficient condition for the invariance of the geome-
try under the flow of a set of symmetry generating vector
fields. In section II we will recall the Killing equation for
teleparallel geometry and solve it for axial, spherical and
homogeneous and isotropic symmetry in the sections III,
IV and V.
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The solutions to the teleparallel Killing equation then
serve as ansatz to solve the field equations of teleparallel
theories of gravity, where we will focus on f(T,B, ϕ,X)-
gravity in this article.
Main overview references to teleparallel geometry and

teleparallel gravity are: the book [2] and the reviews [3,
4].

A. Teleparallel geometry

Throughout this work, we consider a 4-dimensional
manifold M as spacetime manifold. The fundamental
ingredients to a teleparallel geometry of spacetime are:

• The tetrads {θa}3a=0, i.e. 1-form fields which form
a basis of the cotangent spaces at each p ∈ M .
They can be expressed in local coordinates (x) and
define the spacetime metric g

θa = θaµdx
µ, g = gµνdx

µdxν = ηabθ
a
µθ

b
νdx

µdxν = ηabθ
aθb ,

(1)

where ηab = diag(1,−1,−1,−1) is the Minkowski
metric. We denote the dual vector fields to the te-
trads by {ea}3a=0, which can be expressed in local
coordinates as ea = ea

µ∂µ. Their components sa-
tisfy ea

µθaν = δµν and ea
µθbµ = δba.

• The independent flat and metric compatible con-
nection 1-form ωa

b = ωa
bµdx

µ. It can equally be
expressed in terms of affine connection coefficients
as

Γµ
νρ(θ, ω) = ea

µ(∂ρθ
a
ν + ωa

bρθ
b
ν) . (2)

The flatness and metric compatibility condition im-
ply that the connection coefficients ωa

bµ are given
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by

ωa
bµ = Λa

c∂µ(Λ
−1)cb , (3)

where Λa
b satisfy ηabΛ

a
cΛ

b
d = ηcd, i.e. Λ

a
b is an

element of the Lorentz group. Since this teleparallel
connection is flat and metric compatible it posses-
ses only one non-vanishing characteristic tensor: its
torsion. It serves as building block to define telepa-
rallel theories of gravity from an action principle,

Tσ
µν(θ, ω) = Γσ

νµ − Γσ
µν . (4)

Thus, teleparallel geometries are manifolds M equipped
with a tuple (θa, ωa

b) that is composed of a tetrad and a
teleparallel connection, or, since the connection is locally
defined in terms of an element Λ of the Lorentz group
SO(1, 3), by a tuple (θa,Λa

b).
Having fixed a tuple (θa, ωa

b), or (θ
a,Λa

b), we can ap-

ply a Lorentz transformation Λ̂ to obtain a transformed
tetrad and Lorentz transformation

(θa,Λa
b) 7→ (θ̃a, Λ̃a

b) , (5)

by setting

θ̃a = θb(Λ̂−1)ab, Λ̃a
b = Λ̂a

cΛ
c
b . (6)

One finds that the geometric objects introduced so far are

invariant under the transformation (θa, ωa
b)

Λ̂→ (θ̃a, ω̃a
b)

by the Lorentz transformation Λ̂

gµν(θ̃) = gµν(θ), Γρ
µν(θ̃

a, Λ̃a
b), Tσ

µν(θ̃, ω̃) = Tσ
µν(θ, ω) .
(7)

In this sense, local Lorentz transformations of the tu-
ple (θa, ωa

b) are gauge transformation of the geometry.
Thus, every teleparallel theory of gravity that is built
from these geometric building blocks possesses this local
Lorentz invariance.
A special choice of gauge is the so called the Weit-

zenböck gauge. By choosing Λ̂a
b = (Λ−1)ab, any tuple

(θa, ωa
b) can be transformed to the tuple (θ̃a, 0), since the

transformed, teleparallel connection generating Lorentz
transformation Λ̃ becomes the constant identity matrix.
The Weitzenböck gauge is particularly useful for calcula-
tions since the affine connection simplifies to

Γµ
νρ(θ̃, 0) = ẽa

µ∂ρθ̃
a
ν . (8)

In the following we will mainly work in Weitzenböck
gauge. Before we discuss symmetries of teleparallel
geometries, we briefly discuss the field equations of
f(T,B, ϕ,X)-gravity.

B. Teleparallel theories of gravity

A teleparallel theory of gravity is defined from an ac-
tion for the fundamental gravitational fields (θa, ωa

b) and

additional matter fields ψ. It can be expressed as functi-
onal on spacetime in the following form

S[θa, ωa
b, ψ] = STP [θ

a, ωa
b] + SM [θa, ωa

b, ψ]

=
1

2κ2

∫
M

d4x|θ|L(θa, ωa
b, ∂θ

a, ∂ωa
b, ....)

+ SM [θa, ωa
b, ψ] , (9)

where |θ| denotes the norm of the determinant of the te-
trad, and L is a scalar Lagrange function, which may
depend on the components of the tetrad and the connec-
tion, as well as on their derivatives. The matter action
is denoted by SM [θa, ωa

b, ψ] and can in principle also
dependent on all variables. Usually the teleparallel con-
nection only appears, if at all, in the matter action for
spinor fields. We will not enter the discussion on mater
coupling in teleparallel gravity here, a detailed discussion
on thus topic can for example be found here [5].
Variation of the action with respect to the tetrad yields

field equations of the form

Ea
µ := (δθSTP )a

µ = 2κ2(δθSM )a
µ = 2κ2Taµ , (10)

where Taµ is the energy momentum tensor generated by
the matter fields. It is convenient to multiply this equa-
tion by θaρ and gµσ to obtain field equations of the form

Eρσ = 2κ2Tρσ , (11)

which can be decomposed into symmetric and anti-
symmetric part

E(ρσ) = 2κ2T(ρσ), E[ρσ] = 2κ2T[ρσ] . (12)

Variation with respect to the spin connection compo-
nents yields equations which are equivalent to the anti-
symmetric field equations displayed above [6]. The anti-
symmetric part of the energy-momentum tensor is only
non-vanishing if matter fields are coupled to the telepa-
rallel connection.
We will focus on L = f(T,B, ϕ,X) theories here as an

example for a teleparallel theory of gravity for which one
can solve the field equations (at least the anti-symmetric
part) in the presence of spacetime symmetries. These
theories are defined by an arbitrary function of the so-
called torsion scalar

T =
1

4
TµνρTµνρ +

1

2
TµνρTρνµ − TρT

ρ , (13)

the boundary term

B =
2

θ
∂µ (θT

σ
σ
µ) , (14)

a scalar field ϕ and its kinetic energy termX = 1
2∂µϕ∂

µϕ.
The field equations in Weitzenböck gauge are, see for
example [7],

2δλν □̊fB − 2∇̊λ∇̊νfB +BfBδ
λ
ν + 4

[
(∂µfB) + (∂µfT )

]
Sν

µλ

+ 4h−1hAν∂µ(hSA
µλ)fT − 4fTT

σ
µνSσ

λµ − fδλν

+ ϵ fX∂
λϕ∂νϕ = 2κ2T λ

ν , (15)
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where a˚over an object means that it is defined in terms
of the Levi-Civita connection of the metric (1).

This class of teleparallel theories of gravity contains
the ones most studied in the literature:

• the teleparallel equivalent of general relativity
(TEGR). This teleparallel theory of gravity is dyna-
mically equivalent to general relativity. This means
that all tetrads θa which solve the field equations
of this theory define metrics g via (1), that solve
the Einstein equations. The reason for this equiva-
lence is that the teleparallel action L = T differs
from the Einstein-Hilbert action of general relati-
vity only by the boundary term B. In this case
the anti-symmetric field equations of (15) vanish
identically.

• f(T,B) gravity and f(T ) gravity, for which the fi-
eld equations (15) simplify only marginally. The
anti-symmetric field equations for these classes of
theories are in general non-vanishing and given by

E[µν] := 4
[
(∂ρfB) + (∂ρfT )

]
S[µ

ρ
ν] =

3

2
T ρ

[µν∂ρ](fT + fB) ,

(16)

where the subscripts T and B denote the derivative
of f with respect to these quantities.

In the next section we will discuss how to imple-
ment symmetries of a teleparallel geometry and how
these help to solve the (anti-symmetric) field equations
of f(T,B, ϕ,X) gravity.

II. SPACETIME SYMMETRIES - THE
TELEPARALLEL KILLING EQUATION

The discussion of symmetries in teleparallel geometry
follows [8], where all details of the derivations can be
found.

A symmetry of a spacetime M is an action Φ : G ×
M →M of a Lie group G on M . This action is given by
diffeomorphisms Φu := Φ(u, ·) :M →M for each u ∈ G,
which leave the geometry of M invariant. To make this
statement more precise we need to specify what we mean
by ”leaving the geometry of M invariant“.

The geometry ofM is determined by the affine connec-
tion (2). Moreover, the geometry felt by the matter fields
which do not couple to the connection is determined by
the metric (1) generated by the tetrads. Hence we say
that the geometry of M is invariant under the action of
a Lie group G if and only if the metric and the affine
connection are invariant under all diffeomorphisms Φu.
Technically this means that their pullback must satisfy

(Φ∗
ug)µν = gµν , (Φ∗

uΓ)
ρ
µν = Γρ

µν . (17)

Infinitesimally, the diffeomorphisms Φu are generated by
vector fields onM labeled by elements ξ of the Lie algebra
g of G, which leads to the Killing equations for the metric

and the connection. A spacetime geometry possesses the
symmetry generated by g if and only if the Lie derivati-
ves of the metric and the connection with respect to the
vector fields Xξ which generate the diffeomorphisms Φu

vanish

(LXξ
g)µν = ∇̊µXξν + ∇̊νXξµ = 0 (18)

(LXξ
Γ)µνρ = ∇ρ∇νX

µ
ξ −∇ρ(X

σ
ξ T

µ
νσ) = 0 , (19)

where ∇ is the covariant derivative of the teleparallel
connection and ∇̊ the Levi-Civita covariant derivative.
Using the relation between the teleparallel variables,

the tetrad θa and the connection coefficients ωa
b, and

the metric and the affine connection, the conditions (18)
and (19) can be translated into the teleparallel Killing
equations, which we display in Weitzenböck gauge

(LXθ)
a
µ = Xν

ξ ∂νθ
i
µ + ∂µX

ν
ξ θ

i
ν = −λaξ bθbµ (20)

(LXω)
a
bµ = ∂µλ

a
ξ b = 0 . (21)

In other words, a teleparallel geometry in Weitzenböck
gauge is invariant under a Lie group action G, if and
only if there exists a Lie algebra homomorphism between
the symmetry algebra g and the Lorentz algebra so(1, 3),
i.e. a map λ : g → so(1, 3), such that the tetrad and and
the Lie algebra elements λ(ξ)ab = λaξ b ∈ so(1, 3) satisfy

(20).
Let us now derive solutions to the teleparallel Killing

equations for certain choices of symmetry groups G and
demonstrate how these help us to find solutions for tele-
parallel theories of gravity.

III. AXIAL SYMMETRY

Axial symmetry is encoded in the existence of one Kil-
ling vector field which generates the rotations around one
axis. This generator forms the Lie algebra so(2) and ge-
nerates the group SO(2). In coordinates (t, r, ϑ, φ) the
Killing vector field is simply given by Xz = ∂ϕ.
The first step to solve the teleparallel Killing equa-

tions is to determine the Lie algebra homomorphism λ
that maps the generator Xz into the Lorentz algebra.
From the second equation in (20) we find that it must
be constant. There exist two canonical choices for this
ismorphism

λ1(Xz) =

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ∈ so(1, 3)

and

λ2(Xz) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∈ so(1, 3) . (22)

Solving the first equation in (20) for each of them results
in the two possibilities for axially symmetric tetrads

eBFIS, Ano 15,2022 ISSN:2318-8901 eBFIS 04 04401-1-3(2022)



Author

θaI µ(t, r, ϑ, φ) =

 C0
0 C0

1 C0
2 C0

3

C1
0 cosφ− C2

0 sinφ C1
1 cosφ− C2

1 sinφ C1
2 cosφ− C2

2 sinφ C1
3 cosφ− C2

3 sinφ
C1

0 sinφ+ C2
0 cosφ C1

1 sinφ+ C2
1 cosφ C1

2 sinφ+ C2
2 cosφ C1

3 sinφ+ C2
3 cosφ

C3
0 C3

1 C3
2 C3

3

 ,

(23)

θaIIµ(t, r, ϑ) =

C
0
0 C0

1 C0
2 C0

3

C1
0 C1

1 C1
2 C1

3

C2
0 C2

1 C2
2 C2

3

C3
0 C3

1 C3
2 C3

3

 , (24)

where Ca
µ = Ca

µ(t, r, ϑ). One of the tetrads has a very
specific dependence on the angle φ while the other is in-
dependent of this coordinate. Hence we found two tuples
of tetrad and spin connection which are axially symme-
tric (θaI , 0) and (θaII , 0).

Observe that the tetrads θaI and θaII can be transformed
into each other with help of a Lorentz transformation, say
Λ̂. However, performing such a transformation on (θaI , 0)

leads to the equivalent tuple (θaII , ω
a
b(Λ̂)) which is dif-

ferent from (θaII , 0). Similarly, when one applies the Lo-

rentz transformation Λ̂−1 to the tuple (θaII , 0) one obtains

the equivalent tuple (θaI , ω
a
b(Λ̂

−1)) which is not equi-
valent to (θaI , 0). Thus, non-Weitzenböck gauge axially
symmetric teleparallel geometries, which are equivalent
to either (θaI , 0) or (θ

a
II , 0) can be obtained by applying a

local Lorentz transformations according to the rules dis-
cussed in section IA. Further details on the derivation of
these tetrads can be found in [8].

The tetrads (23) and (24) lead in general to a an axially
symmetric metric with all components. We can use the
freedom of redefining the coordinates and fix some of the
free functions Ca

µ to find two classes of tetrads

θaI µ(t, r, ϑ, φ) =

C
0
0 0 0 0

0 C1
1 cosφ C1

2 cosφ −C2
3 sinφ

0 C1
1 sinφ C1

2 sinφ C2
3 cosφ

0 C1
1C

1
2(C

3
2)

−1 C3
2 0

 ,

(25)

θaIIµ(t, r, ϑ) =

C
0
0 0 0 C0

3

0 C1
1 C1

2 0
C2

0 0 0 C2
3

0 C1
1C

1
2(C

3
2)

−1 C3
2 0

 ,

(26)

which lead to an axially symmetric metric with only one
off diagonal component

g = gttdt
2 + grrdr

2 + gϑϑdϑ
s + gφφdφ

2 + gtφdtdφ .
(27)

The first branch (25) is called the regular branch since it
has a proper limit to spherically symmetric tetrads, while
the second one has not (26). The tetrads (25) and (26)
turn out to be particularly good starting points to find
solutions for f(T,B, ϕ,X) -gravity, see [7], where also all
details on the following statements about the solutions
can be found.

Assuming no time dependence of the tetrad compo-
nents (∂tC

a
µ = 0), for the regular branch (25) the anti-

symmetric field equations (16) become

(∂ϑfT + ∂ϑfB)Qϑ + (∂rfT + ∂rfB)Qr = 0 , (28)

where

Qϑ =
∂rC

0
0

C0
0

− C1
1

C2
3
+
∂rC

2
3

C2
3
, Qr =

C1
2 − ∂ϑC

2
3

C2
3

− ∂ϑC
0
0

C0
0
.

(29)

Now there are several options to find solutions to these
equations:

• Universal solutions for any f by demanding that
Qϑ and Qr vanish. These gives a relation between
the tetrad coefficients

C1
1 = C2

3∂rC
0
0

C0
0

+ ∂rC
2
3, C1

2 = C2
3∂ϑC

0
0

C0
0

+ ∂ϑC
2
3 .

(30)

This such obtained tetrad lead to a class of metrics
which do not contain the famous axially symmetric
solutions of general relativity, the Kerr, C or Taub-
NUT metric or perturbations of them.

• The equations Qr = 0 = (fT,ϑ+fB,ϑ) are solved by
a tetrad which generates metrics of the Taub-NUT
type
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θaI µ =


√

A(r) 0 0
√
A(r) (C2 + C1 cosϑ)

0
√

B(r) sinϑ cosφ
√

C(r) cosϑ cosφ −
√

C(r) sinϑ sinφ
0

√
B(r) sinϑ sinφ

√
C(r) cosϑ sinφ

√
C(r) sinϑ cosφ

0
√

B(r) cosϑ −
√
C(r) sinϑ 0

 . (31)

This tetrad is a suitable ansatz for the symmetric
field equations to search for teleparallel corrections
to the Taub-NUT metric in f(T,B, ϕ,X) -gravity.
It is close to the standard spherically symmetric
tetrad, as we will see in section IV, and basically
only contains one additional term in tϑ-component.

• The solutions to the equations Qϑ = 0 = (fT,r +
fB,r) yield metrics which could not be connected to
any known solutions of general relativity and whose
physical interpretation is unclear so far, which is
why we do not discuss this branch here further.

• The general case, where none of the terms in the
anti-symmetric field equations vanish separately is
the most involved one. In order to be able to obtain
solutions we make the ansatz that most of the te-
trad components are fixed to the values of a tetrad

of the Kerr metric

C0
0 =

√
1− 2Mr

Σ
, C1

1 =
C3

2√
∆
, C1

2 =
√

Σ− (C3
2)2 ,

(32)

C2
3 =

√
sin2 ϑ

(
2a2Mr sin2 ϑ

Σ
+ a2 + r2

)
+ (C0

3)2 ,

C0
3 = − 2aMr sin2 ϑ√

Σ(Σ− 2Mr)
, (33)

where a is the angular momentum parameter, Σ =
r2 + a2 cos2 ϑ and ∆ = r2 − 2Mr + a2. By ma-
king a power series ansatz for the remaining tetrad
component

C3
2 = r sinϑ+A(r, ϑ)a2 +O(a3) (34)

one can solve the anti-symmetric field equations to
second order in a with

A(r, ϑ) =
sinϑ cos2 ϑ

(
4µ5 + 6µ2r3/2 + r5/2 + 4µr2 + µ4

√
r − 16µ3r

)
2µ2r3/2 (−µ2 − 4µ

√
r + r)

+ C(r)F1(r, ϑ) +D(r)F2(r, ϑ) , (35)

where µ =
√
r − 2M , and C(r) and D(r) are ar-

bitrary functions (related to the integration of the
differential equation) and F1(r, ϑ) and F2(r, ϑ) are
specific functions which are related to the Legendre
function of the first and second kind, see [9]. Hence,
so far it is only possible to find a good ansatz for
af(T,B, ϕ,X)-gravity extension of Kerr geometry
perturbatively. The search for a non-pertutbative
teleparallel correction ot Kerr geometry is an on-
going research project.

The study of solutions of the anti-symmetric field equa-
tions for the second branch axial tetrad (26) is also in its
infancy, which is why it will not be discussed further here.
The interested reader finds further details in [7, Sec. V].

IV. SPHERICAL SYMMETRY

Spherically symmetric geometries are invariant under
the group action of SO(3). To implement this invari-
ance we add two further Killing vector fields to the axial
symmetric one, so that all together they form the so(3)
algebra [8]. In coordinates (t, r, ϑ, φ) they take the form

Xz = ∂φ, Xy = − cosφ∂ϑ +
sinφ

tanϑ
∂φ,

Xx = sinφ∂ϑ +
cosφ

tanϑ
∂φ . (36)

As in the previous case we must find a homomorphism,
which maps these generators of so(3) into so(1, 3). In this
case there exists only one such homomorphism which is
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given by

λ(Xz) =

 0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , λ(Xy) =

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 ,

λ(Xx) =

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 .

(37)

Solving the remaining teleparallel killing equation for the
tetrad yields the most general spherically symmetric te-
trad

θaµ =


C1 C2 0 0

C3 sinϑ cosφ C4 sinϑ cosφ C5 cosϑ cosφ− C6 sinφ − sinϑ(C5 sinφ+ C6 cosϑ cosφ)
C3 sinϑ sinφ C4 sinϑ sinφ C5 cosϑ sinφ+ C6 cosφ sinϑ(C5 cosφ− C6 cosϑ sinφ)
C3 cosϑ C4 cosϑ −C5 sinϑ C6 sin

2 ϑ

 (38)

where Ci = Ci(t, r). The resulting metric is the standard spherically symmetric metric with one off diagonal term
that can be set to zero by a redefinition of the t coordinate

g = (C2
1 − C2

3 )dt
2 − (C2

4 − C2
2 )dr

2 − (C2
5 + C2

6 )(dϑ
2 + sin2ϑdφ2)− (C3C4 − C1C2)dtdr . (39)

Employing (38) in the anti-symmetric field equations of
f(T,B, ϕ,X) -gravity yields two non-trivial expression

C3C5(f
′
T + f ′B) = 0 , C1C6(f

′
T + f ′B) = 0 , (40)

which can be solved by the following choices:

• C2 = C6 = 0 and fixing the t and r-coordinate by
setting C2 = 0 and C5 = ξr, where ξ = ±1. This
yields the two real tetrads

θa±µ =

C1 0 0 0
0 C4 sinϑ cosφ rξ cosϑ cosφ −rξ sinϑsinφ
0 C4 sinϑ sinφ rξ cosϑ sinφ rξ sinϑ cosφ
0 C4 cosϑ −rξ sinϑ 0

 .

(41)

• Setting C1 = C5 = 0 and fixing the t and r-
coordinate by setting C4 = 0 and C6 = χr, where
χ = ±1, leads to two complex tetrads

θa±µ =


0 iC2 0 0

iC3 sinϑ cosφ 0 −rχ sinφ −rχ sinϑ cosϑ cosφ
iC3 sinϑ sinφ 0 rχ cosφ rχ sinϑ cosϑ sinφ
iC3 cosϑ 0 0 rχ sin2 ϑ

 .

(42)

The complexification of the tetrad is necessary to
preserve the signature of the metric (39). The me-
tric itself is diagonal and real.

These four tetrads are the spherically symmetric ones
which serve as starting point to search for spherically
symmetric solutions of the symmetric field equations of
f(T,B, ϕ,X)-gravity. It is possible to find numerous per-
turbative solutions in f(T ) and f(T,B) gravity, which
can be interpreted as teleparallel corrections to Schwarzs-
child geometry and can be tested against observations
like the shadow of black holes, the perihelion shift of stars
orbiting a black hole, lensing effects and the shapiro de-
lay [10–14]. In general the complex tetrads and the two
different real tetrads lead to very different phenomeno-
logy.
For the complex tetrad (42) it is even possible to find

an exact solution to teleparallel Born-Infeld gravity [15,
16]

f(T,B, ϕ,X) = f(T ) = α

(√
1 + 2T

α − 1

)
. (43)

It is the first non-perturbative spherically symmetric
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solution to a teleparallel theory of gravity (beyond
Schwarzschild geometry in TEGR), and is given by, see
[14],

(C3)
2 =

a21
r

[√
α(a0α+ r)− 2 tan−1

(√
αr

2

)]
(44)

(C2)
2 =

α5/2r5

(4 + r2α)2

[√
α(a0α+ r)− 2 tan−1

(√
αr

2

)]−1

.

(45)

For this solution to give an asymptotically flat metric one
needs to fix the constant of integration a1 =

√
α−1. If one

wants moreover, that this solution becomes Schwarzs-
child geometry for α → ∞, one needs to fix the second
constant of integration as a0 = − 2M

α .

V. HOMOGENEOUS AND ISOTROPIC
SYMMETRY

Last but not least we enlarge the symmetry algebra
further to the full cosmological spatial homogeneous and
isotropic symmetry, which is generate by the vector fields

Xz = ∂ϕ , Xy = − cosφ∂ϑ +
sinφ

tanϑ
∂φ ,

Xx = sinφ∂ϑ +
cosφ

tanϑ
∂φ , (46)

X1 = χ sinϑ cosφ∂r +
χ

r
cosϑ cosφ∂ϑ − χ sinφ

r sinϑ
∂φ

(47)

X2 = χ sinϑ sinφ∂r +
χ

r
cosϑ sinφ∂ϑ +

χ cosφ

r sinϑ
∂φ (48)

X3 = χ cosϑ∂r −
χ

r
sinϑ∂ϑ , (49)

where χ =
√
1− kr2, u =

√
k and k is the spatial curva-

ture parameter. The homorphism Λ depends on if k < 0,
k > 0 or k = 0. A complete classification of the possible
homorphisms can be found in [17]. Solving the teleparal-
lel Killing equation (20) for the tetrad for the different
possibilities leads to two branches of spatially homogene-
ous and isotropic tetrads in Wetzenböck gauge:

θaI µ =

 Nχ iuArχ−1 0 0
iuNr sinϑ cosφ A sinϑ cosφ Ar cosϑ cosφ −Ar sinϑ sinφ
iuNr sinϑ sinφ A sinϑ sinφ Ar cosϑ sinφ Ar sinϑ cosφ
iuNr cosϑ A cosϑ −Ar sinϑ 0

 , (50)

θaIIµ =


N 0 0 0
0 A sinϑ cosφχ−1 Ar(χ cosϑ cosφ+ ur sinφ) −Ar sinϑ(χ sinφ− ur cosϑ cosφ)
0 A sinϑ sinφχ−1 Ar(χ cosϑ sinφ+ ur cosφ) Ar sinϑ(χ cosφ+ ur cosϑ sinφ)
0 A cosϑχ−1 −Arχ sinϑ −ur2 sin2 ϑ

 . (51)

Both branches of tetrads can be real or complex depen-
ding on the sign of k. They coincide for k = 0.

The most interesting fact about these tetrads is, that
they solve the anti-symmetric field equations for any te-
leparallel theory of gravity. The reason is that for te-
trads which obey the symmetry conditions, all derived
tensors like the torsion and its covariant derivatives sa-
tisfy the symmetry conditions. Hence the anti-symmetric
field equation of any teleparallel theory of gravity are gi-
ven by an anti-symmetric spatially homogeneous and iso-
tropic (0, 2)-tensor field E[µν]. However, it can be shown,
see [8], that such a tensor field can only have vanishing
components, and hence E[µν] = 0. Thus the tetrads (50)
and (51) are universal solutions of the anti-symmetric fi-
eld equations in cosmology in any teleparallel theory of
gravity.

VI. CONCLUSION

Spacetime symmetries give important simplifications
in the search for solutions of teleparallel theories of gra-
vity. To apply spacetime symmetries in teleparallel gra-
vity we discussed the teleparallel Killing equation (20),
which we solved for the most important classes of sym-
metries:

• In axial symmetry, there exist two independent
classes of Weitzenböck tetrads. One with a spe-
cific dependence on the φ coordinate (23) (or (25)
in its minimal version), and one that is independent
of the φ coordinate (24) (or (26) in its minimal ver-
sion);

• in spherical symmetry there is only one class of
Weitzenböck tetrads, which is given by (38);
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• while there exists again two classes of spatially ho-
mogeneous and isotropic tetrads (50) and (51), for
which it depends on the sign of the spatial curva-
ture parameter k if they are real or complex.

These tetrads are good starting points to find solutions
to the field equations in teleparallel theories of gravity.

The homogeneous and isotropic ones are universal so-
lutions to the anti-symmetric field equations for all tele-
parallel theories of gravity. In spherical symmetry there
exist four branches of solutions in f(T,B, ϕ,X)-gravity,
while in axial symmetry numerous solutions are possi-
ble, whose physical viability must be investigated case
by case.

In ongoing and future research projects the tetrads pre-
sented here will help to find physical solutions in various
teleparallel theories of gravity, also beyond f(T,B, ϕ,X)-

gravity.
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