
International Centre for Physics
Instituto de F́ısica, Universidade de Braśılia
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We have used the Pauli-Schrödinger equation in its covariant form, that is, written in the light-
cone of a five-dimensional De Sitter space-time. Following standard procedures, the analogue of the
Dirac equation is derived, standing for a galilean spin 1/2 particle in the presence of a external field.
Some results are important to be mention, such as the expected g-factor, but in a galilean (not
Lorentz) context. In addition, considering interaction, the Pauli-Hartree-Fock equation is obtained
following in parallel to the ideas used to construct the Dirac-Hartree-Fock equation.
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I. INTRODUCTION

It is with the work of Wigner of 1939 [1] that be-
gins the systematic study of the unitary representations
Poincaré group, resulting in the development unprece-
dented for physics, and in particular for relativistic quan-
tum mechanics. In this context, it is the symmetries of
space-time that essentially define the structure and dy-
namics of the mechanical system, and each elementary
particle is associated with an irreducible representation
of Poincaré’s group.

In this way the axiomatic ingredients of relativistic
quantum field theory are established in a transparent and
general manner; thus elegance [2–4].

Despite the progress that follows Wigner’s work in un-
derstanding Poincaré’s group, it is not until the 1950s
that a similar study for non-relativistic quantum mechan-
ics begins. In this case, the symmetry structure is estab-
lished by the invariance of the Schrödinger equation by
space and time transformations, which results in Galilei’s
group.

The unitary representations of a symmetry group are
deduced by associating each group element to a unitary
operator meeting the group composition rules [5]. More
specifically, consider G a symmetry group with elements
a;b;c;...

For each a ∈ G is associated a unitary operator U(a)
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defined in a Hilbert space, such that

U(a)U(b) = eφ(a,b)U(a, b).

The phase factor φ(a, b) is a real and continuous function
of a and b. If φ(a, b) = 0 we say that the representation
is faithful. Otherwise, the representation is said to be
projective. In this situation, a vector in Hilbert’s space
is less than the phase factor.

Inönü and Wigner [6], studying the unitary represen-
tations of Galilei’s group, concluded that with the re-
liable representations, it would not be possible to con-
struct localized wave functions that had sharp velocities.
That is, such representations should be dismissed as pos-
sible candidates to describe a non-relativistic quantum
particle. On the other hand, Bargman [7] showed that
for the rotation group, Lorentz and Poincaré, projective
representations could be reduced to a faithful representa-
tion. However, this is not the case with Galilei’s group,
where projective representations in general are not re-
ducible to faithful representation [8]. In a synthesis of the
works of Inönü, Wigner and Bargman, and Hamermesh
[9], studying Lie algebra of the Galilei group, was estab-
lished that the position and momentum operators could
be defined only for the case of projective representations,
which are now also called physical representations [10].
Since then, interest in unitary representations describing
Galilean symmetries has focused mainly, and as with the
Poincaré group, on the study of conformal and internal
symmetry structures (In this situation, spin variables ap-
pear for consistency in non-relativistic physics, not as a
property of Lorentzian invariance). [11–18].

It is in this sense that Takahashi [20–22] introduced
a covariant version for Galilei’s group based on penta-
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dimensional tensors. This method has been used, in par-
ticular, to reduce nonlinear field equations, from which
the rearrangement of superfluid symmetries has been an-
alyzed in connection with Goldstone bosons. Another
aspect of interest is the study of representations describ-
ing non-relativistic particles with arbitrary spin. For a
more detailed reading [23].

we will present the formalism to arrive at the explic-
itly covariant form of the Pauli-Schrödinger equation and
show some applications of this formalism, such as the de-
velopment of the Pauli-Hartree-Fock equation (PHF) and
the natural appearance of spin-orbit interaction (without
the need of perturbation theory) due to the metric cho-
sen, with a similar approach used in literature [25].

II. GALILEAN COVARIANCE

The Galilei transformations are given by

x′ = Rx+ vt+ a (1)

t′ = t+ b (2)

where R stands for the three-dimensional Euclidean ro-
tations, v is the relative velocity defining the Galilean
boosts, a stands for spacial translations and b, for time
translations. Consider a free mass particle m; the mass
shell relation is given by p2 − 2mE = 0.

We can then define a 5-vector, pµ =
(px, py, pz,m,E) = (pi,m,E), with i = 1, 2, 3.

Thus, we can define a scalar product of the type

pµpνg
µν = pipi − p5p4 − p4p5 = p2 − 2mE = k, (3)

where gµν is the metric of the space-time to be construct,
e pνg

µν = pµ.

Let us define a set of canonical coordinates qµ as-
sociated with pµ, by writing a five-vector in M , qµ =
(q, q4, q5), q is the canonical coordinate associated with
p; q4 is the canonical coordinate associated with E, and
thus can be considered as the time coordinate; q5 is the
canonical coordinate associated with m explicitly given
in terms of q and q4, qµqµ = qµqνηµν = q− 2q4q5 = s2.

From q5 = q2

2t ; or infinitesimally, we obtain δq5 = v ·δ q
2 .

Therefore, the fifth component is basically defined by ve-
locity.

That can be seen as a special case of a scalar product
in G denoted as

(x|y) = gµνxµyν =

3∑
i=1

xiyi − x4y5 − x5y4, (4)

where x4 = y4 = t, x5 = x2

2t e y5 = y2

2t . Hence, the
following the metric can be introduced

(gµν) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0

 . (5)

This is the metric of Galilean manifold G. In the sequence
this structure is explored in order to study unitary rep-
resentations.

III. THE SCHRÖDINGER EQUATION

Consider a vector qµ ∈ G that obeys the set of linear
transformations of the type

q̄µ = Gµνq
ν + aµ. (6)

A particular case of interest of these transformation,
given by

q̄i = Rijq
j + viq4 + ai (7)

q̄4 = q4 + a4 (8)

q̄5 = q5 − (Rijq
j)vi +

1

2
v2q4. (9)

In the matrix form, the homogeneous transformations are
written as

Gµν =


R1

1 R1
2 R1

3 vi 0
R2

1 R2
2 R2

3 v2 0
R3

1 R3
2 R3

3 v3 0
0 0 0 1 0

viR
i
j viR

i
2 viR

i
3

v2

2 1

 . (10)

We can write the generators as

Ji =
1

2
εijkM̂jk,

Ki = M̂5i,

Ci = M̂4i,

D = M̂54.
(11)

Hence, the non-vanishing commutation relations can be
rewritten as

[Ji, Jj ] = iεijkJk,

[Ji, Cj ] = iεijkCk,

[D,Ki] = iKi,

[p4, D] = ip4,

[pi,Kj ] = iδijp5,

[p4,Ki] = ipi,

[D, p5] = ip5,

[Ji,Kj ] = iεijkKk,

[Ki, Cj ] = iδijD + iεijkJk,

[Ci, D] = iCi,

[Ji, pj ] = iεijkpk,

[pi, Cj ] = iδijp4,

[p5, Ci] = ipi.

(12)

This relations form a subalgebra of the Lie algebra of
Galilei group in the case of R3 × R, considering Ji the
generators of rotations Ki and Ci of the pure Galilei
transformations, Pµ the spacial and temporal transla-
tions and D of the kind temporal dilatation (which we
will not discuss here). In fact, we can observe that eqs.
(7) and (8) are the Galilei transformations given by eq.
(1) and (1), with x4 = t. The eq. equationreG− 3 is the
compatibility condition which represents the embedding

I : A→ A =

(
A, A4,

A2

2A4

)
; A ∈ E3, A ∈ G
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. The commutation of Ki and Pi is naturally non-zero in
his context, so P5 will be related with mass.

The invariants of this algebra in this context are

I1 = pµp
µ (13)

I2 = p5 (14)

Using the Casimir invariants I1 and I2 and applying in
Ψ, we have:

(pµpµ − k2)Ψ = 0, (15)

p5Ψ = −mΨ (16)

where k is an arbitrary constant e (pµ) = (p, p4, p5) = p′),
and c′ is a velocity constant, and we will take as the unit
c′ = 1. The equation is built on the Galilei manifold,
where gµ is the metric-matrix element of a 5-dimensional
space, given by gµν = (e11, e22, e33,−e45,−e54), where
eµν = 1 represents the non-zero matrix element. The
invariants of g are I1 = PµP

µ and I2 = P5. Using the
correspondence, pµ = −i~∂µ, and applying Ψ, we have:{

∂µ∂
µΨ = k2Ψ

∂5Ψ = −imΨ
, (17)

where m is a constant and using Ψ(xµ) =
exp(−imx5)(φ(x, t), we obtain

− 1

2m
∇2φ(x, t) =

(
i∂t +

k2

2m

)
φ(x, t), (18)

which is the Schrödinger equation of a free particle of

mass m and energy E +
k2

2m
.

IV. THE PAULI-SCHRÖDINGER EQUATION

In this context, we present a construction of the spin
wave equation 1/2, defining a new quadrivetor γµ such
that,

(∂µ∂
µ − k2) = (γµ∂µ + k)(γν∂ν − k) (19)

so, for Eq. (19) to be valid γµ must obey Clifford’s alge-
bra, that is,

{γµ, γν} = 2gµν (20)

where gµν is our 5-dimensional metric.
Taking the positive part and acting on the wave func-

tion ψ(x)

(γµ∂µ + k)ψ(x) = 0 (21)

For convenience, we will use the following representations
of γµ

γi =

(
σi 0
0 −σi

)
, γ4 =

(
0
√

2
0 0

)
, (22)

γ5 =

(
0 0

−
√

2 0

)
; (23)

where σi are the Pauli’s matrices and
√

2 is the 2x2
identity matrix multiplied by

√
2.

Let k = 0 and adding a potential V , we have

(
σ · p −(E − V )

√
2√

2m −σ · p

)(
ψL

ψS

)
= 0 (24)

which leads us to

σ · pψL − (E − V )
√

2ψS = 0 (25)

σ · pψS −
√

2mψL = 0 (26)

In Eq. (26) we have

ψL =
σ · p
m
√

2
ψS (27)

Substituting in Eq. (25) and using the fact (σ ·p)(σ ·p) =
p2, we have

EψL =
p2

2m
ψL + V ψL (28)

Similarly,

EψS =
p2

2m
ψS + V ψS (29)

What is the Schrödinger equation for ψS and ψL respec-
tively.

V. THE PAULI-HARTREE-FOCK EQUATION

The Hartree-Fock Equation is given by

f(1) = h(1) + νHf (1) (30)

where

h(1) = −1

2
∇2

1 −
∑
A

ZA
r1A

(31)

and

νHF =
∑
b

Jb(1)−Kb(1) (32)

Expanding ψL e ψS in their bases:

ψL = |χL〉cL; ψS = |χ〉cS (33)

Multiplying on the left by (〈χL, 〈χS), we have

ΠSScS =
√

2SSLcLm (34)

ΠLLcL +
√

2VLScS =
√

2SLScSELS (35)
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where

ΠLL = 〈χL|σ · p|χL〉, VLS = 〈χL|V |χS〉

SLS = 〈χL|χS〉.

Thus, our Fock matrix is

F =

[
FLL FLS

FSL FSS

]
(36)

with

FLLµν = ΠLL
µν +

∑
κλ

PLLκλ
[
(µLνL|κLλL)− (µLλL|κLνL)

]
+
∑
κλ

PSSκλ
[
(µLνL|κSλS)

]
FLSµν =

√
2V LSµν −

∑
κλ

PSLκλ (µLλL|κSνS)

FSLµν = −
∑
κλ

PLSκλ (µSλS |κLνL)

FSSµν = ΠSS
µν +

∑
κλ

PLLκλ (µSνS |κLλL)

+
∑
κλ

PSSκλ
[
(µSνS |κSλS)− (µSλS |κSνS)

]
And of course the form of the PHF equations in Galilean
covariance is the same in the case of the hartree-fock
equation (with C as the e-arrays as eigenvalues)

FC = SCE (37)

VI. THE MODIFIED PAULI EQUATION

Choosing the Ansazt,

ψS ≡ σ · pφL

2
√

2mc2

where c is the velocity of light, replacing in the expression(
σ · p −

√
2(E − V )√

2m −σ · p

)(
ψL

ψS

)
= 0, (38)

and rearranging terms, we have(
σ · p V σ·p

2mc2

0 − p2

2
√

2mc2

)(
ψL

φL

)
=

(
0 Eσ·p

2mc2

−
√

2m 0

)(
ψL

φL

)
(39)

Thus,

σ · pψL +
V σ · p
2mc2

φL =
Eσ · p
2mc2

φL (40)

p2φL = 4m2c2ψL (41)

Multiplying the first equation by
σ · p
2m

on the left, we

have

p2

2m
ψL +

(σ · p)V (σ · p)

4m2c2
φL = EψL (42)

The only term remaining that has any spin dependence is
the term involving the potential in Eq. (42), and this can
also be separated out using the Pauli Matrices properties,

(σ · p)V (σ · p) = pV · p + iσ · pV × p

It is now plain that the real spin dependence in the Dirac-
like Pauli-Schrödinger equation is not in the kinetic en-
ergy, but in the potential for the small component-a fact
that is hidden in our explicitly covariant form of the
Pauli-Schrödinger equation. In an atomic system the po-
tential is spherically symmetric, and we may write the
spin-dependent term as

iσ · pV × p =
1

r

∂V

∂r
~σ · r × p =

2

r

∂V

∂r
S · L (43)

By performing the spin separation, we have obtained a
term that involves the interaction of the spin and the
orbital angular momentum, a spin–orbit interaction.

VII. CONCLUSIONS

We began with a discussion of the Galilean Co-
variance. After, we showed the Galilean covariant
Pauli-Schrödinger equation and we constructed the
Galilean Dirac-Hartree-Fock-like equations; then propose
a Hartree-Fock equation. Utilizing the modified Dirac-
like equation, we also arrive at the spin-orbit coupling
with the same g-factor found in relativistic mechanics.
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