The argumentative progression of the three definitions of figure in the Meno

Authors

  • Rafael Cavalcanti de Souza Universidade Estadual de Campinas - Campinas - Unicamp - Brasil

DOI:

https://doi.org/10.14195/1984-249X_35_32

Keywords:

Definitions, Figures, Method of Analysis, Knowledge, Mathematics

Abstract

The article examines the three definitions of figure in Plato’s Meno, relating them to the analytical method of geometry. The first defines in perceptual terms (colors of surfaces), useful for initial identification but insufficient for rational explanations. The second abstracts figure as the limit of solids, offering clarity but violating the simplicity criterion by explaining something simple through something complex. The third, implicit definition, describes by the lines that delimit it, surpassing the previous ones by using a simple element with explanatory power. The ordering of the definitions reflects the analytical method of geometry and the Socratic method of generalizations.

Downloads

Download data is not yet available.

References

BURNET, J. (ed.). (1900-1907). Plato. Platonis Opera 5 vols. Oxford, Clarendon Press.

CROCKER, R. (1963). Pythagorean Mathematics and Music. The Journal of Aesthetics and Art Criticism 22, n. 2, p. 189-198.

FRIEDLEIN, G. (1967). Proclus. Procli Diadochi in primum Euclidis elementorum librum commentarii Bibliotheca scriptorum Graecorum et Romanorum Teubneriana. Leipzig, Teubner.

FINE, G. (2014). The Possibility of Inquiry: Meno’s Paradox from Socrates to Sextus Oxford, Oxford University Press.

HEATH, T. L. (1926). The Elements of Euclid 3 vols. 2nd ed. Cambridge, Cambridge University Press. (Reprint: New York: Dover, 1956).

HEATH, T. L. (1921). A History of Greek Mathematics, vol. I: From Thales to Euclid. New York, Dover Publications.

HEIBERG, L. (1969). Euclides. Euclidis Elementa Leipzig: B. G. Teubner. Ed. E. S. Stamatis & J. L. Heiberg.

HIRSCH, E. D. (1967). Validity in Interpretation New Haven: Yale University Press.

IGLÉSIAS, M. (2001). Platão. Mênon São Paulo: Edições Loyola.

IGLÉSIAS, M. (2020). Platão. Teeteto São Paulo: Editora Loyola.

KNORR, W. R. (1986). The Ancient Tradition of Geometric Problems Boston: Birkhäuser. (Reprint: New York: Dover).

KNORR, W. R. (1991). What Euclid Meant: On the Use of Evidence in Studying Ancient Mathematics. In: Science and Philosophy in Classical Greece New York/London, Garland, p. 119-163.

LLOYD, G. E. R. (2004). The Meno and the Mysteries of Mathematics. In: CHRISTIANIDIS, J. (ed.). Classics in the History of Greek Mathematics Boston Studies in the Philosophy of Science 240. Dordrecht, Springer, p. 169-183.

MCKIRAHAN, R. (1983). Aristotelian Epagoge in Prior Analytics 2.21 and Posterior Analytics 1.1. Journal of the History of Philosophy 21, n.1, p. 1-13.

MENDELL, H. (1984). Two Geometrical Examples from Aristotle's Metaphysics Classical Quarterly 34, p. 359-372.

MENDELL, H. (1998). Making Sense of Aristotelian Demonstration. Oxford Studies in Ancient Philosophy 16, p. 161-225.

NEHAMAS, A. (1985). Meno’s Paradox and Socrates as a Teacher. Oxford Studies in Ancient Philosophy 3, p. 1-30.

MORROW, G. R. (1992). Proclus. A Commentary on the First Book of Euclid's Elements Trans. with intro. and notes by Glenn R. Morrow; foreword by Ian Mueller. Princeton, Princeton University Press.

ROSS, D. (ed.) (1964). Aristotle. Prior and Posterior Analytics: A Revised Text with Introduction and Commentary Oxford, Oxford University Press .

ROSS, D. (ed.) (1949). Aristotle. Metaphysics 2 vols. Oxford, Oxford University Press.

SCOTT, D. (2006). Meno’s Paradox Cambridge, Cambridge University Press.

Published

2026-01-12

How to Cite

Souza, R. C. de. (2026). The argumentative progression of the three definitions of figure in the Meno. Revista Archai, (35), e03532. https://doi.org/10.14195/1984-249X_35_32

Issue

Section

Articles