Leveraging AI-Evidence in Money Laundering Cases in Mexico

its Rules of Evidence (according to SCJN’s resolutions)

Authors

DOI:

https://doi.org/10.26512/lstr.v17i1.54403

Keywords:

AI-generated evidence. Money laundering. SCJN resolutions. Legal framework. Mexican Law.

Abstract

[Purpose] To analyze the admissibility of AI-generated evidence in money laundering cases in Mexico, with an emphasis on how this type of evidence might be evaluated under existing SCJN resolutions.

[Methodology/approach/design] This research uses a qualitative methodology, utilizing a comprehensive literature review of the SCJN’s judicial resolutions regarding evidence in money laundering cases. While no cases involving AI-generated evidence were found, the research examines current legal principles to anticipate how such evidence might be evaluated under the Mexican legal system.

[Findings] The research shows that, although the SCJN has not yet addressed cases involving AI-generated evidence, existing legal guidelines provide a foundation for determining its admissibility. These findings provide a structured approach for the potential future evaluation of AI evidence in Mexican courts.

[Practical implications] The findings of this research can help legal professionals, including judges and lawyers, understand how AI-generated evidence can be evaluated under the current legal framework. These findings will help shape future legal practices regarding the use of AI in the collection of evidence in money laundering cases.

[Originality/value] This paper is among the first to explore the admissibility of AI-generated evidence within the Mexican legal system, providing valuable insights for legal professionals and policymakers on how AI technology aligns with legal evidentiary standards in money laundering cases.

Downloads

Download data is not yet available.

Author Biography

Patricia Margarita Sanchez Reyes, Escuela de Gobierno y Trasformación Pública del Tecnológico de Monterrey. México

PhD, Post Doc Researcher, Tecnologico de Monterrey, Escuela de Gobierno y Trasformación Pública. E-mail: sanchez.patricia@tec.mx.

References

Alhajeri, R., & Alhashem, A. (2023). Using Artificial Intelligence to Combat Money Laundering. Intelligent Information Management, 284-305.

Amparo Directo en Revisión 617/2011 (Primera Sala de la Suprema Corte de Justicia de la Nación, 2011).

Amparo Directo en Revisión 740/2011 (Primera Sala de la Suprema Corte de Justicia de la Nación, March 28, 2012).

Amparo Directo en Revisión 374/2013 (Primera Sala de la Suprema Corte de Justicia de la Nación, January 29, 2014).

Amparo Directo en Revisión 2369/2014 (Primera Sala de la Suprema Corte de Justicia de la Nación, February 25, 2015).

Amparo Directo en Revisión 1932/2018 (Primera Sala de la Suprema Corte de Justicia de la Nación, September 05, 2018).

Amparo Directo en Revisión 6575/2018 (Primera Sala de la Suprema Corte de Justicia de la Nación,November 21, 2019).

Amparo Directo en Revisión 1091/2021 (Primera Sala de la Suprema Corte de Justicia de la Nación, November 17, 2021).

Amparo Directo en Revisión 5937/2021 (Primera Sala de la Suprema Corte de Justicia de la Nación, 2022).

Amparo en Revisión 11/2015 (Primera Sala de la Suprema Corte de Justicia de la Nación, April 22, 2015).

Amparo en Revisión 25/2018 (Primera Sala de la Suprema Corte de Justicia de la Nación, December 05, 2018).

Amparo en Revisión 26/2018 (Primera Sala de la Suprema Corte de Justicia de la Nación, 2018).

Angelov, P. P., Arnold, N. I., Soares, E. A., Atkinson, P. M., & Jiang, R. (2021). Explainable artificial intelligence: an analytical review. WIREs Data Mining and Knowledge Discovery, 1-13.

Arda Akartuna, E., Johnson, S. D., & Thornton, A. E. (2023). The money laundering and terrorist financing risks of new and disruptive technologies: a futures‐oriented scoping review. Security Journal, 615-650.

Banco de México. (February 2021). Consideraciones en torno a la iniciativa de modificación a la Ley del Banco de México relativa a operaciones con divisas en efectivo. Retrieved from: https://www.banxico.org.mx/portales-de-usuarios/informacion-sobre-remesas/d/%7B9C64A160-127A-7534-FAC8-8150726D89D2%7D.pdf

Barone, R., Masciandaro, D., & Schneider, F. (2022). Corruption and money laundering: You scratch my back, i'll scratch yours. Metroeconomica, 318-342.

Bjerregaard, E., & Kirchmaier, T. (2019). The Danske Bank Money Laundering Scandal, A Case Study. CBS Copenhagen Business School, 1-78.

Bo, Li., Singh K., & Wang Q., (2022). A Robust AI Agent-based Approach to Tackle and Prevent Money Laundering, Springer, 1-10.

Buchanan, B. G. (2006). A (Very) Brief History of Artificial Intelligence. AI Magazine, 53-60.

Byrne Hessick, C. (2016). Vagueness Principles. Arizona State Law Journal, 1137-1167.

Canhoto, A. I. (2021). Leveraging machine learning in the global fight against money laundering and terrorism financing: An affordances perspective. Journal of Business Research, 441-452.

Contradicción de Tesis, 455/2012 (Primera Sala de la Suprema Corte de Justicia de la Nación, February 27, 2013).

Contradicción de Tesis, 220/2017 (Segunda Sala de la Suprema Corte de Justicia de la Nación, January 17, 2018).

Contradicción de Tesis, 8/2018 (First Chamber of the Supreme Court of Justice of the Nation, February 20, 2019).

Contradicción de Tesis, 28/2019 (Pleno de la Suprema Corte de Justicia de la Nación, October 21, 2019).

Contradicción de Tesis, 147/2021 (Primera Sala de la Suprema Corte de Justicia de la Nación, February 09, 2022).

Contradicción de Tesis 187/2023 (Segunda Sala de la Suprema Corte de Justicia de la Nación, February 21, 2024).

Cox, D. (2014). Handbook of Anti-money Laundering. West Sussex: Wiley.

Aldana, A., Falcón-Cortés, A., & Larralde, H. (2022). A machine learning model to identify corruption in Mexico’s public procurement contracts. ArXiv, 1-17.

Di Castri, S., Grasser, M., & Kulenkampff, A. (2018). An AML SupTech Solution for the Mexican National Banking and Securities Commission (CNBV) R2A Project Retrospective and Lessons Learned. Regtech for Regulators Accelerator, 1-16.

European Parliament. (2024). European Parliament legislative resolution of 13 March 2024 on the proposal for a regulation of the European Parliament and of the Council on laying down harmonised rules on Artificial Intelligence (Artificial Intelligence Act) and amending certain Union Legislative Acts. Retrieved from: https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf

FAFT (2021). Opportunities and Challenges of New Technologies for AML/CFT. Paris: FAFT/OECD. Retrieved from: https://www.fatf-gafi.org/en/publications/Digitaltransformation/Opportunities-challenges-new-technologies-for-aml-cft.html

FAFT. (2023). International Standards on Combating Money Laundering and the Financing of Terrorism & Proliferation. FAFT. Retrieved from: https://www.fatf-gafi.org/en/publications/Fatfrecommendations/Fatf-recommendations.html

FAFT (2021). FINANCIAL INTEGRITY FOR SUSTAINABLE DEVELOPMENT. United Nations. Retrieved from: http://factipanel.org/docpdfs/FACTI_Report_ExecSum.pdf

Forbes Staff. (August 21, 2023). Gobierno niega que el narcotráfico use remesas para lavar dinero desde EU. Forbes, Retrieved from: https://www.forbes.com.mx/gobierno-niega-narcotrafico-remesas-lavar-dinero-eu/.

García Sandoval, H. E. (1999). El Marco Jurídico para el Control de Lavado de Dinero en México. Iuris Tantum: Revista del Instituto de Investigaciones Jurídicas, 9-19.

Gobierno de México. ¿Quiénes Somos? Retrieved from: https://uif.gob.mx/es/uif/quienes_somos

Grimm, P., Grossman, M. R., & Cormack, G. V. (2021). Artificial Intelligence as Evidence. Northwestern Journal of Technology and Intellectual Property Northwestern Journal of Technology and Intellectual Property, 9-106.

Isolauri, E., & Ameer, I. (2023). Money laundering as a transnational business phenomenon: a systematic review and future agenda. Critical Perspectives on International Business, 426-468.

Khelil, I., Khlif, H., & Achek, I. (2023). The economic consequences of money laundering: a review of empirical literature. Journal of Money Laundering Contro.

Kute, D., Pradhan, B., Shukla, N., & Alamri, A. (2021). Deep Learning and Explainable Artificial Intelligence Techniques Applied for Detecting Money Laundering-A Critical Review. IEEE, 82300-82317.

Leyva, E. C. (2013). Lavado de dinero en México. Estimación de su magnitud y análisis de su combate a través de la inteligencia financiera. Realidad, Datos y Espacios, Revista Internacional de Estadística y Geografía, 6-17.

OECD. (2019). Money Laundering and Terrorist Financing Awareness Handbook for Tax Examiners and Tax Auditors. Paris: OECD. Retrieved from: https://www.oecd.org/tax/crime/money-laundering-and-terrorist-financing-awareness-handbook-for-tax-examiners-and-tax-auditors.pdf

Palomino Guerrero, M. (2022). Inteligencia Artificial: un mecanismo para frenar la evasiñon fiscal sin vulnerar los derechos del contribuyente. Cuestiones Constitucionales, 213-236.

Pardo, M. S. (2015). The Law of Evidence and the Practice of Theory. University of Pennsylvania Law Review, 285-292.

Patel, H., & Thakkar, B. (2012). Money Laundering Among Globalized World. In Globalization – Approaches to Diversity, 163-182). Rijeka: IntechOpen.

Presidencia de la República. (June 12, 2019). Plan Nacional de Desarrollo 2019-2024. Retrieved from: https://www.dof.gob.mx/nota_detalle.php?codigo=5565599&fecha=12/07/2019#gsc.tab=0

Sánchez, J. (September 24, 2020). Lavado de dinero aporta 1.5% del PIB, revela UIF. El Sol de México, Retrieved from: https://www.elsoldemexico.com.mx/finanzas/lavado-de-dinero-aporta-1.5-del-pib-revela-uif-santiago-nieto-5800609.html.

Sánchez, Z. (December 2020). Francisco José. Retrieved from: http://omawww.sat.gob.mx/cifras_sat/Documents/Evasión_en_sueldosysalarios_redes_de_patrones_Chapingo.pdf

Secretaría de Economía. (2016). Norma Oficial Mexicana NOM-151-SCFI-2016, Requisitos que deben observarse para la conservación de mensajes de datos y digitalización de documentos (cancela la NOM-151-SCFI-2002). Retrieved from: https://www.dof.gob.mx/normasOficiales/6499/seeco11_C/seeco11_C.html

Secretaría de Hacienda y Crédito Público. (November 2023). Evaluación Nacional de Riesgos de Lavado de Dinero y Financiamiento al Terrorismo ("ENR"). Mexico. Retrieved from: https://www.pld.hacienda.gob.mx/work/models/PLD/documentos/enr2023.pdf

Secretría de la Función Pública. (April 30, 2018). Crea SFP Subcomisión de Inteligencia Artificial y Deep Learning de la CIDGE. Retrieved from: https://www.gob.mx/sfp/prensa/crea-sfp-subcomision-de-inteligencia-artificial-y-deep-learning-de-la-cidge

Seidman Diamond, S., & Lempert, R. O. (2018). Introduction. Daedalus, the journal of the American Academy of Arts & Science, 5-14.

Smith, T. (April 02, 2022). Disruptive Technology: Definition, Example, and How to Invest. Investopedia, Retrived from: https://www.investopedia.com/terms/d/disruptive-technology.asp

Soldatos, J., & Kyriazis, D. (Edits.). (2022). Big Data and Artificial Intelligence in Digital Finance. Glasgow, UK: Springer.

Solicitud de Ejercicio de la Facultad de Atracción, 427/2022 (Primera Sala de la Suprema Corte de Justicia de la Nación September 07, 2022).

Stein, A. (2015). The New Doctrinalism: Implications for Evidence Theory. University of Pennsylvania Law Review, 2085-2107.

Tesis I.1o.A. 182 A (10a.), Digital Record 2016243 (Primer Tribunal Colegiado en Materia Administrativa del Primer Circuito, February 2018).

Thayer, J. B. (1889). Presumptions and the Law of Evidence. Harvard Law Review, 141-166.

Tillen, J. G., Billings, L., & Kossak, J. (2013). Avoiding the Domino Effect: Keeping Abreast of the Global AML/CFT Legal and Regulatory Landscape. Getting the deal Through- Anti-Money Launderin 2013, 3-4.

U.S. Department of State. (March 01, 2001). U.S. Department of State. Retrieved from: https://2009-2017.state.gov/j/inl/rls/nrcrpt/2000/959.htm

Ugwu, C. N., & Eze, V. H. (2023). Qualitative Research. IDOSR Journal pf Computer and Applied Sciences, 20-25.

United Nations. (September 10, 2018). United Nations- Meetings Coverage and Press Releases. Retrieved from: https://press.un.org/en/2018/sc13493.doc.htm

United Nations. Office on Drugs and Crime. Retrieved from: https://www.unodc.org/unodc/en/index.html

United Nations. United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances, 1988. Retrieved from: https://www.unodc.org/unodc/en/treaties/illicit-trafficking.html

Universidad Autónoma de México. (2021). Evasión Tributaria: Análisis de redes. Retrieved from: http://omawww.sat.gob.mx/cifras_sat/Documents/Evasión_tributaria_análisis_de_redes_UNAM.pdf

Zapata Sagastume, W., Moreno-Brid, J., & Stefanie, G. (2016). Money Laundering and Financial Risk Management in Latin America, with Special Reference to Mexico*. Economía: Teoría y práctica, 9-50.

Zumaya, M., Guerrero, R., Islas, E., Pineda, O., Gershenson, C., Iñiguez, G., & Pineda, C. (2021). Identifying Tax Evasion in Mexico with Tools from Network Science and Machine Learning. En O. M. Granados, & J. R. Nicolás-Carlock, Corruption Networks , 89-113. Springer Cham.

Downloads

Published

2025-05-02

How to Cite

SANCHEZ REYES, Patricia Margarita. Leveraging AI-Evidence in Money Laundering Cases in Mexico: its Rules of Evidence (according to SCJN’s resolutions). Law, State and Telecommunications Review, [S. l.], v. 17, n. 1, p. 86–116, 2025. DOI: 10.26512/lstr.v17i1.54403. Disponível em: https://periodicos.unb.br/index.php/RDET/article/view/54403. Acesso em: 26 dec. 2025.